001     907253
005     20230522125350.0
024 7 _ |a 10.1103/PhysRevE.105.045303
|2 doi
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0061
|2 ISSN
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/31038
|2 Handle
024 7 _ |a altmetric:116050694
|2 altmetric
024 7 _ |a WOS:000786497300007
|2 WOS
037 _ _ |a FZJ-2022-01922
082 _ _ |a 530
100 1 _ |a Herbst, Michael F.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Surrogate models for quantum spin systems based on reduced-order modeling
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650343699_11402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a methodology to investigate phase diagrams of quantum models based on the principle of the reduced basis method (RBM). The RBM is built from a few ground-state snapshots, i.e., lowest eigenvectors of the full system Hamiltonian computed at well-chosen points in the parameter space of interest. We put forward a greedy strategy to assemble such a small-dimensional basis, i.e., to select where to spend the numerical effort needed for the snapshots. Once the RBM is assembled, physical observables required for mapping out the phase diagram (e.g., structure factors) can be computed for any parameter value with a modest computational complexity, considerably lower than the one associated to the underlying Hilbert space dimension. We benchmark the method in two test cases, a chain of excited Rydberg atoms and a geometrically frustrated antiferromagnetic two-dimensional lattice model, and illustrate the accuracy of the approach. In particular, we find that the ground-state manifold can be approximated to sufficient accuracy with a moderate number of basis functions, which increases very mildly when the number of microscopic constituents grows—in stark contrast to the exponential growth of the Hilbert space needed to describe each of the few snapshots. A combination of the presented RBM approach with other numerical techniques circumventing even the latter big cost, e.g., tensor network methods, is a tantalizing outlook of this work.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a PASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482)
|0 G:(EU-Grant)817482
|c 817482
|f H2020-FETFLAG-2018-03
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stamm, Benjamin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wessel, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rizzi, Matteo
|0 P:(DE-Juel1)177780
|b 3
773 _ _ |a 10.1103/PhysRevE.105.045303
|g Vol. 105, no. 4, p. 045303
|0 PERI:(DE-600)2844562-4
|n 4
|p 045303
|t Physical review / E
|v 105
|y 2022
|x 2470-0045
856 4 _ |u https://juser.fz-juelich.de/record/907253/files/PhysRevE.105.045303.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907253
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Department of Mathematics, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Department of Mathematics, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Straße 26, 52074 Aachen, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177780
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2021
|d 2022-11-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21