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Surrogate models for quantum spin systems based on reduced-order modeling

Michael F. Herbst®" and Benjamin Stamm ©
Department of Mathematics, RWTH Aachen University, Schinkelstrafle 2, 52062 Aachen, Germany

Stefan Wessel ©F

Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Straf3e 26, 52074 Aachen, Germany

Matteo Rizzi ®$

Forschungszentrum Jiilich GmbH, Institute of Quantum Control, Peter Griinberg Institut (PGI-8), 52425 Jiilich, Germany

and Institute for Theoretical Physics, University of Cologne, D-50937 Koln, Germany
® (Received 25 November 2021; accepted 9 March 2022; published 4 April 2022)

We present a methodology to investigate phase diagrams of quantum models based on the principle of the
reduced basis method (RBM). The RBM is built from a few ground-state snapshots, i.e., lowest eigenvectors
of the full system Hamiltonian computed at well-chosen points in the parameter space of interest. We put
forward a greedy strategy to assemble such a small-dimensional basis, i.e., to select where to spend the
numerical effort needed for the snapshots. Once the RBM is assembled, physical observables required for
mapping out the phase diagram (e.g., structure factors) can be computed for any parameter value with a modest
computational complexity, considerably lower than the one associated to the underlying Hilbert space dimension.
We benchmark the method in two test cases, a chain of excited Rydberg atoms and a geometrically frustrated
antiferromagnetic two-dimensional lattice model, and illustrate the accuracy of the approach. In particular, we
find that the ground-state manifold can be approximated to sufficient accuracy with a moderate number of basis
functions, which increases very mildly when the number of microscopic constituents grows—in stark contrast
to the exponential growth of the Hilbert space needed to describe each of the few snapshots. A combination of
the presented RBM approach with other numerical techniques circumventing even the latter big cost, e.g., tensor
network methods, is a tantalizing outlook of this work.
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I. INTRODUCTION

The study of quantum spin models, dating back to the early
days of quantum mechanics, is a central topic in modern con-
densed matter physics. Indeed, as basic quantum many-body
systems with inherently strong correlations, these models
often display interesting ground states including complex
ordering patterns, quantum disordered regimes, or topolog-
ical order such as in quantum spin liquids [1]. In addition,
these ground states are in many cases good approximations
to the low-temperature behavior of real physical systems or
compounds that are described by these models. While exact
analytical solutions for specific quantum spin models exist,
such as the early Bethe-ansatz solution of the one-dimensional
Heisenberg spin-% chain [2], most realistic models instead
require advanced computational techniques for their solution.

Most traditionally, a (more or less theory-guided) scan of
numerical instances needs to be computed across the param-
eter space of the Hamiltonian in order to map out the phase
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diagram of the model—commonly through the computation
of relevant observables (e.g., structure factors). Whatever is
the method of choice, each such instance is typically very
expensive, despite remarkable progresses to get around the
naive exponential growth of the Hilbert space with the num-
ber of spins in a finite-size sample (see below). Moreover,
the scan could be certainly performed in an embarrassingly
parallel manner and/or initial guesses could be recycled from
already converged simulations for nearby parameter values.
Still, these approaches are burning a considerable amount of
CPU hours. Moreover, employing previous simulations as a
guess is not unproblematic and may, for example, give rise to
spurious hysteresis in the proximity of phase transitions.

In this paper, we put forward an alternative and com-
plementary strategy, relying on the so-called reduced basis
method (RBM)—borrowed from the numerical mathemat-
ics community (see below)—that promises to tear down the
overall amount of expensive computational instances for a
faithful phase diagram. The core idea is to establish cheap
surrogate models for a many-query context of parametrized
quantum spin models, based on a few sample points for which
snapshots, i.e., solutions of the true Hamiltonian problem, are
actually produced. First, in an offline or training phase, these
sample points are chosen—typically via a greedy strategy—
and a reduced basis is assembled out of the corresponding

©2022 American Physical Society
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snapshots. The aim of the procedure is to obtain a subspace,
which encompasses an accurate approximation of the solu-
tion across the given parameter domain. Then, in a so-called
online phase, the special (affine) form of the parametrized
Hamiltonians allows to obtain an approximate solution for
any parameter value in a complexity solely depending on the
assembled low-dimensional space and not on the potentially
very high dimension of the Hilbert space.

Using such small-dimensional effective models in engi-
neering, physics, and numerical modeling is an old idea,
which has fruited not only in theoretical considerations, but
also computational implementation. Early contributions in the
field of such reduced-order modeling [3—6] include applica-
tions to partial differential equations (PDEs) that originate in
structural and fluid mechanics. Between 2000 and 2010 the
method gained much popularity due to the mathematically
rigorous error control through the variational framework [7]
alongside which the notion of a reduced basis method was
established. Nowadays, reviews [8] as well as monographs
[9,10] are available on the topic. In the context of eigen-
value problems the application of the RBM is less popular,
despite the fact that the idea was already used in early con-
tributions. See, for example, Ref. [11] for an application
in structural mechanics using an effective small-dimensional
basis and following a variational ansatz. For parametric eigen-
value problems in a PDE setting this idea was then formalized
in Ref. [12] and extended in Ref. [13] using a posteriori error
estimators. In Ref. [14] a generalization to target clusters of
eigenvalues of a parametrized eigenvalue problem was pre-
sented.

Here, as anticipated, we want to bring the benefits of the
reduced basis method to the quantum world and exploit it to
speed up and economize the parameter scans required for the
generation of quantum phase diagrams. As a proof of con-
cept, we test the methodology on two quantum-spin models,
namely, a model used for a chain of excited Rydberg atoms
and a model for the antiferromagnetically coupled spin—%
triangles in the compound LasCu3zMoOj,. Noticeably, for a
given precision target, the number of required snapshots stays
moderate even when the investigated region spans different
phases of the model. Furthermore, we will demonstrate this
number to grow only weakly with the system size. Both fea-
tures are somehow pleasantly surprising and they open up a
number of theoretical questions. Moreover, the RBM strategy
could contribute to green computing as well.

Before delving into the technical presentation, let us note
that the RBM framework is agnostic to the precise numer-
ical technique employed for obtaining the snapshots. It is
thus fully complementary to existing algorithms. To keep this
benchmark study simple we will employ exact numerical di-
agonalization (ED) [15,16], which is however strongly limited
by the exponential growth of the Hilbert space with the num-
ber of spins in a finite-size sample. One possibility to evade
such restriction is stochastic sampling of the wavefunction
via quantum Monte Carlo (QMC) methods [16]; however, in
the presence of geometric frustration, quantum Monte Carlo
methods typically suffer severely from the negative-sign prob-
lem [17]. A modern alternative—Iless prone, if not immune,
to such issues—is offered by the density matrix renormaliza-
tion group (DMRG) [18] and its descendant tensor-network

(TN) approaches [19-22]. These are based on the insight that
physically relevant states are typically low entangled and thus
occupy only a comparably small subset of the total Hilbert
space. Of note this is a different concept of space reduction
compared to the RBM approach with the relation between the
two still remaining to be explored.

The paper is organized as follows. In Sec. II, we formalize
the quantum spin problems as abstract parametrized eigen-
value problems and show how the two test examples, i.e.,
the chain of excited Rydberg atoms and the geometrically
frustrated antiferromagnetic two-dimensional lattice model,
can be cast in this framework. Section III introduces the re-
duced basis method for the abstract family of model problems
with particular focus on handling degenerate states that might
appear. Section IV presents the numerical results for the two
test cases while Sec. V is left for conclusions.

II. PROBLEM SETTING

We first introduce an abstract form to describe quantum
spin models, and later show how our two concrete examples
can be cast into this form. We consider a system with N de-
grees of freedom (e.g., quantum spins), such that the quantum
state of the total system belongs to the Hilbert space H = CcN,
with N = d™ie and where d denotes the dimension of the
Hilbert space of each of the Nys degrees of freedom. The
interactions are modeled by a Hamiltonian H(u) formulated
in a so-called affine decomposition, i.e.,

0
Hip) =) 6,(m)H,, €Y
q=1

where u € P denotes a set of parameters in the parameter
domain of interest, 6, : P — R indicates a scalar parameter-
dependent function, and H, :  — H are Hermitian matrices
of dimension A" x N . We assume that the number of terms, Q,
is independent of N.

We are now interested to evaluate, for each u € P, the
ground state(s) of the Hamiltonian H(u), i.e., the eigen-
vector(s) ¥(u) = (Y (p), ..., V,,(n)) corresponding to the
smallest eigenvalue A(u) solution to the problem

H)W () = A(r)¥ (). @

Note that our numerical RBM will naturally allow for (m-fold)
degenerate ground states, which can arise due to symmetries.

In most applications, however, one is not so much in-
terested in the high-dimensional solution W(u) itself, but
rather in the (scalar) expectation values of a set of physical
observables as the parameters are tuned around, i.e., into a
collection O(p) : P — R of functionals of A(x) and ¥(u)
(p being the index running over the collection). Although a
complete abstract framework is possible, we restrict ourselves
to affine-decomposable observables, i.e.,

R
O(p) =Y a,(u;p) Oy, 3)

r=1

where o, (i; p) € C are scalar coefficients and O, parameter-
independent matrices of dimension A/ x . Furthermore, we
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consider only averages over the ground manifold:

R m
O p) = Y i p) = 3 W O ). ()
r=1 o
In the applications below, for example, p will take the role of
the Fourier wave vector for the structure factor as observable.

We will address the particular scenario where the solution
to these eigenvalue problems needs to be solved for many
different parameter values g in a many-query context, for
example, a sweep through the parameter space, i.e., evaluating
the map p — O(u; p) for many parameter values u € P.
Despite the fact that state-of-the-art numerical methods do not
scale exponentially with the number of constituents—in con-
trast to the Hilbert-space dimension—a fine-resolution scan
over the parameter domain is still very expensive due to the
overall complexity to compute the ground state for each new
parameter value. In such cases of a many-query context, we
will make here use of the linear dependency of the different
solutions (from one parameter value to the other) and thus
render such computations considerably more affordable.

Let us now explicitly show how two physical problems of
current interest in the community can be cast in this abstract
framework.

A. Chains of excited Rydberg atoms

As a first example, we consider Rydberg atoms assem-
bled into a regular lattice by means of optical tweezers,
as it became customary in recent years, in a series of ex-
periments of increasing relevance for quantum simulation
purposes [23-27]. We pick up here the simplest—yet very
insightful—setup of an equally spaced one-dimensional chain
(with lattice spacing a), with atoms modeled as two-level
systems coupled by an external laser with Rabi frequency €2.
The interplay between the level detuning A and the dipolar
interaction strength between excited atoms gives rise to a
wealth of different breaking patterns of the (discrete) trans-
lational symmetry, dictated by the Rydberg-blockade radius
Ry [28-33].

We therefore consider the following Hamiltonian, scaled
by A2 (and with ng = R,/a):

6
Hp) = %Zaf - %Zﬁ, + Z (r/”_S r> iy, (5)

r<r’

where the indices r, ' belong to the range £ = {1, ..., N,}.
Here, o) and 71, = %(l + o) denote, respectively, the x Pauli
matrix and the Rydberg excitation (single-particle) operators
corresponding to the site r, according to the common conven-
tion

A= @THRA® @) (6)
for any operator A acting on a single site.
Evidently, Hamiltonian (5) is already formulated as an
affine decomposition [see Eq. (1)], with

— __é _ .6 _ _6
h(p)=—pu = (1) = puy = ng,

Q K
the corresponding Hamiltonian components He(1 2.3;, and the
parameter vector u = (A /L2, ng) being easily identified.

o) =1,

The identification of the different symmetry-breaking pat-
terns is particularly transparent by looking at the structure
factor,

1
S(uik) = = 3 exp(=i (= ) (i), (D)

which therefore will constitute the (parametrized) output
functional we are interested in. Let us notice that this is also
already in the affine decomposition form assumed in Eq. (4),
by introducing

exp(—i(r — r')k)

Oy pt (k) = N

and O, , = i,f,. 8)

B. Antiferromagnetic spin-% triangles in La;Cu3zMoO;,

As a second example we consider a quantum spin—% Sys-
tem that is composed out of a square lattice of triangular
units (trimers), each containing three spins. This model was
examined previously [34,35] as a basic model to describe
the magnetism observed in La;Cuz;MoO, [36,37]. Due to an
antiferromagnetic coupling of the trimer spins, this system is
geometrically frustrated. As a result, it cannot be efficiently
studied by QMC methods, for example, due to a severe sign
problem. In earlier studies [34,35], its ground-state phase
diagram, as a function of varying the intradimer couplings
(as specified below), has been obtained using exact numerical
diagonalization calculations, with one expensive numerical
instance per point in the parameter space PP. Below, we will
reexamine this model within our reduced-order modeling ap-
proach, which will allow us to obtain the same ground-state
phase diagram through a much cheaper scan over P with the
surrogate model obtained in a (short) training phase.

We thus consider the following (scaled) Hamiltonian:

J J:
H(IL) = Z |:J_;Sr,1 . Sr,2 + J_zsr,Z . Sr,3 + Sr,3 . Sr,l

r
J/

+ ]_(Sr,3 : Sr+x,1 + Sr,2 : Sr+y,1 + Sr,2 . Sr+y,3) s
3

©))
S LT

for u = (17, 7 Z)’ where we decided to adopt J5 as the unit
of energy. It is evident that it is already cast in its affine
decomposition form of Eq. (1) with

) == b)) = pp = 2
1M—Ml—J3, 2IL—M2—J3,

/

O3(w) =1, Os(p) =p3 =

=5
and the Q =4 Hamiltonian components directly readable
from the above. The position vectors r belong to a regu-
lar (NyxN,) lattice £ = Z?> N[0, N,)x[O0, N,) with unit cell
spanned by the unit vectors x = (1,0)" andy = (0, 1)", ba-
sis elements denoted by « € {1, 2, 3}, and periodic boundary
conditions imposed asr + N, x =randr + N,y =r Vr € L,
respectively. Finally, S; , denotes the vector of spin operators
S = (5§88 = %(ax, 0”,0%) acting according to Eq. (6)
on the site » = (r, ), where we converted tuples into a linear
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FIG. 1. Schematic illustration of the antiferromagnetic spin—%
triangle model in the case N, = 3, N, = 2.

index ranging up to 3N,N,, and
Sr,a . Sr’,zx’ =S § + Sly‘ &

r,o”r,«a a=r o + Slz',otslzﬂ’,a"
Figure 1 provides a schematic illustration of the model and we
refer to Ref. [34] for more details about the formulation.

The output functional we are interested in is again the

structure factor
1

S(M;k)=NN
xiVy

> exp(—i(r =) K)(Sc - Sedu.  (10)

r,r’

with the trimer total spin S, =§r,1 +§r,2 +§r,3 (see
Ref. [34]). By introducing

exp(—i(r —r’)-k)
NNy

Qr v (k) = and Or,r’ = §r ' §l"7 (1 1)

we recover the affine decomposition assumed in Eq. (4).

III. METHOD

In this work, we want to make explicit use of the fact that
the solution may—and for our considered examples indeed
does—exhibit high linear dependency for similar parameter
values. This is a working assumption that will be verified

using the upcoming greedy algorithm for each system individ-
ually. In such cases, a low-dimensional basis B should exist to
describe the overall solution manifold

M={W(pn)eH |V (n)gs. of Hu), Vu e P} C H

of the (possibly degenerate) ground states (g.s.) W(u) of the
Hamiltonian H(p) under variation of the parameters u € P,
i.e.,

span B ~ M, with dimB <« .

We postulate that this can be the case even on parameter
domains including nontrivial phase transitions. This working
assumption is supported by numerical evidence in Fig. 2 for
the two problems that we consider here as a benchmark. We
provide the decay of the singular values oy of a snapshot
matrix A = [W(p) | -+ | W(py,, )] over a test grid Eees rEp-
resenting the best approximation error (in the £> sense over
Eest) using N basis functions. The details of the computations
are provided in the figure caption. In the case of the Rydberg
chain, we observe that the number of basis functions required
to approximate any element of the snapshot matrix for fixed
tolerance only increases very mildly for increasing N,. Note
that, relative to the dimension 2"+ of the underlying Hilbert
space, the solution manifold is very low dimensional. This
is illustrated in Fig. 3, where the value of N, for different
tolerances, is plotted with respect to the size of the Rydberg
chain with a direct comparison to the dimension A/ = 2V of
the Hilbert space (note the logarithmic scale for the y axis).
For the frustrated triangular model, instead, we observe an
apparent significant increase with respect to the parameters
Ny, Ny. This can be explained by the fact that in a very
specific region of the parameter domain we are considering—
namely, for J; =J, and J' <« J;—we observe degenerate
ground states with degeneracies of degree 2V, and this
significantly increases the dimension of the solution manifold
targeted by the RBM. Such behavior is, however, related
to the model-dependent (and actually parameter-dependent)
high frustration, and would affect any other approach with a
similar impact. We included this parameter regime as a stress
test for our RBM, while we could have circumvented it by

(a)1° [ (b) 10° ¢
fxzf; ——N,=1,N,=2
— N, = — N,=1LN,=3
— M=% —  N,=1LN,=4
10t — Ny =11 1tk — N.=2N, =1
— N, =12 —— N, =2,N, =2
—— N, =13 — N, =2,N,=3
— N,=3N,=1
_ ~ —— N,=3N,=2
L2 e, — N,—4N, =1
= 10 ° \/ 10 °
5 5
1073 107
—4 L 1 —4 L 1
10 0 25 50 75 100 10 0 25 50 75 100
N N
FIG. 2. Decay of normalized singular values of a snapshot matrix A = [W(p;)| --- | ¥(my,)] consisting of wave functions for

a given Eyy consisting of 49x49 uniformly spaced points in P

=[0, 5]x[0.5,4] and 9x9x9 uniformly spaced points in P =

[0, 2]x[0, 2] x[0.01, 0.1] for the case of (a) Rydberg chains and (b) antiferromagnetic spin-% triangles, respectively.
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FIG. 3. Comparison of basis size to reach particular truncation
error and size of the Hilbert space.

considering only larger values of J’/J or a training grid not
including the diagonal in the J;-J> plane. Of note, even 2V is
asymptotically fairly small compared to the dimension 23V
of the Hilbert space, motivating to pursue a reduced-basis
approach even in this setting.

Let us be once more explicit in stating that here we deal
with the complexity in the parameter space, not with the
exponential cost in the physical system size. The latter can
be accounted for by combining our method with a numerical
method of choice in a black-box manner, whenever the nu-
merical instance for a particular parameter value needs to be
computed. Our RBM framework is therefore complementary
(and not competitive) with respect to established numerical
many-body methods.

Based on the postulate above, one can develop an effi-
cient method providing an effective surrogate model for cheap
scans over the entire parameter domain within a many-query
context. Indeed, once such a low-dimensional approximation
is constructed, the ground-state computation can simply be
performed by a classical Rayleigh-Ritz procedure in this sub-
space. The method described here consist of an offline-online
procedure as is classical in the context of the reduced-basis
method [9]:

(a) Offline. This step consists of constructing the low-
dimensional approximation space by using a greedy algorithm
[9], which we recall here for the sake of completeness. Given
a so-called training (or trial) grid B, consisting of a sizable
number of M training points in P, we will generate a sequence
of low-dimensional approximation spaces of the form

V,, := span{¥(p,), ..., ¥(p,)} = spanB,,
where each W(p;) = (Wi(py), ..., W (y)), k=1,...,n
denotes all m; ground states of H(y,,), explicitly including the
treatment of degenerate ground states in the formalism. The
dimension of V, is therefore d,, := dim(V,) < Z’}:l mj, and
B, € CN*di denotes a basis, for which technical details will
be given later. The parameter values {p,..., i,} C Eirain
(sample points) are a few well-chosen points, whose selection
criterion will be described shortly as well. We call V, the
reduced basis space. The construction of V, requires the com-

putation of n (truth) high-dimensional problems of the form
of Eq. (2).

Starting with an initial parameter value g € Eyuin, the
selection of u, is performed by induction and is based on
a greedy algorithm. Thus, let us assume that V, based on
{my, ..., m,}is given. To select p, . ; we proceed as follows.
We solve

OTH(u)®
<I>(”)(;L) = arg min (#)

_ 12
oeV, ofd 12

for each g € Ein, Where <I>£g)(u) denotes the vector of
(possibly degenerate) ground states. Using the variational
principle, the above solution can be realized by solving the
d,-dimensional (generalized) eigenvalue problem

h(w) o' () = A3 ()b e (1) (13)

with b = B/B,, € C%*%_ Here kig)(u), (pgg)(u) denote ex-
plicitly the smallest eigenvalue of multiplicity m w1th corre-

di : (n) — (o™ n) f
sponding eigenvectors @ " (i) ((prb‘l(u,), e, (prbm(u)) 0
h(w). The reduced (or compressed) Hamiltonian h(u) is as-
sembled as

0
h(r) =Y O(m)h,, (14)

with h, = B;‘;HqB,, € C%xd  The solutions to Eqs. (12) and
(13) are related by the expression Qfg)(u) = Bn(pﬁg)(u). In
other words <I>(")(;L) is the solution represented in the Hilbert
space H and ¢(”)([l,) € C%*™ collects the coefficients of all

<I>(”)([L) when expressed in the basis B,. In accordance with
the usual terminology of numerical linear algebra we will also
use the terms Ritz vector and Ritz value to refer to the RBM
approximations A(")(;L) and d)(”)(u) of the true ground states
A(p) and ¥ (), respectlvely

To find the next sample point u, | we select the parameter
value u for which the RBM Ritz pairs maximize the residual
of the high-dimensional eigenvalue problem, i.e.,

M, =arg max Res,(n) (15)

IE Etrain

with

Res, (1) = | Y [H(0)B.oL (1) — A (B ()] -

Thanks to the affine decomposition, the residuals can be ob-
tained by

Q m
Z O,(1)* 0, (1) waﬁf,»(ﬂﬁ qq' g"rbz(”“)

q.9'=1 i=1

Res,(n)* =

m

— A () Z P () b o (). (16)

Here, the (d,, xd,) matrices h,, = B,TlHqur B, are parameter
independent and can be computed once and for all as soon as
B, is known.

Of note, once the above quantities have been computed and
stored, the computational time required to assemble Eq. (14),
to obtain a solution of the reduced eigenvalue problem (13),

045303-5



HERBST, STAMM, WESSEL, AND RIZZI

PHYSICAL REVIEW E 105, 045303 (2022)

and finally to compute the residual (16) no longer scales with
N, but only depends on d, and Q. Thus, the scan of the
training grid via a simple loop is of affordable complexity.

Having determined p,,; the corresponding high-
dimensional eigenvalue problem (2) is solved exactly with a
solver of choice. The resulting m,,; ground states ¥(u, )
are added to V, to yield the new space V.

Let us make two remarks. First, the snapshots W(u,, )
might be highly linearly dependent on the existing basis B,,.
It is therefore advised to act upon W(u,, ;) in order to reduce
the condition number of the reduced Hamiltonian h(u), e.g.,
by (approximately) orthonormalizing them for defining B, ;.
Indeed, by applying a singular value decomposition (SVD) or
column-pivoted QR decomposition to the orthogonal projec-
tion onto the complement of V, one can obtain a reduced set
of vectors

U, = compress(\ll(unH) — BZb_an\Il(u,nH), tol), (17)

in which unnecessary modes from W(u,,, ), which differ less
than the target tolerance tol > O from B,, are dropped. In
the example of the SVD, this consists simply of choosing
as U, those first left eigenvectors corresponding to singular
values larger than tol. From U, the basis for step n + 1 is
constructed in the usual hierarchical manner concatenating
Bn+1 =[B, | U,l.

Second, let us highlight that we do not actually need the
full V-dimensional formulation of the full solutions ¥(u,,),
but merely their contractions (scalar products and expectation
values) to arrive at the definition of the (compressed) matrices
b, h,, and h,,. This makes the framework in principle com-
patible with a tensor network based solver, where W(u,) is
obtained in an economic form, which is polynomially expen-
sive in the number of system constituents [18-22].

As already emphasized, starting with an initial parameter
value |, € Ein, One repeats this procedure until the max-
imal residual error over the training grid is small enough.
This yields an N-dimensional reduced basis based on n;
eigenvalue computations, i.e., N = d,,. In this manner, the
high-dimensional eigenvalue problem (2) only needs to be
solved n; times. The solution of these n; problems as well as
the compression step (17) and the computation of the reduced
matrices h,, h,,, and b are the only steps that depend on .

Note that the actual surrogate model, i.e., the existing re-
duced basis approximation <I>£g)(u) = B,,(p%)(u) which can
be cheaply computed for any g, can be used in order to
generate accurate initial guesses <I>Eg)(un +1) for the high-
dimensional eigenvalue computation ¥(u,, ;). Moreover, the
number of points, ns, where the greedy algorithm needs to
compute the truth solution is typically much smaller than the
number M of grid points in Eyipn.

The algorithm is schematically summarized in Algorithm 1
where the N -dependent bottlenecks are marked with a sub-
script V.

(b) Online. Once the reduced basis is assembled, the so-
called online step can be started. It is the evaluation of the map
= @ (p)forany p € P where ¢, (pt) denotes the solution
to Eq. (13) and which is independent of N (only depends on
N and Q). Note that for the online step n = N and we drop for
the quantities in this step the superscript ) since the reduced
basis is fixed at this point.

Algorithm 1. Overview of the offline step.

Data: Training grid Eyuin C P, ity € Eyain, 1 the number of truth
eigenvalue computations.
Result: A surrogate reduced basis model rbm,, = {B,,, b, h,, h,,/}
with N basis functions based on 7; truth solves.

W(p,) < truth — solvernr(st,) (2)
rbm; <« compress (¥(u,)) an

while max ¢z, res,(n) > tol do

for i € By do

@ (n) < rb-solver(rbm,) (13)
res, (i) < residual(tbx)’)(u), rbm,,) (16)
Wypy < argmax,cg . res, (i) (15)
W(p, 1) < truth-solvern(p, ) 2)
U, < compress (B, ¥(,,1)) 17

rbm,,y; = {By41, b, hy, gy} - -
<« assemble (B, U,)
precompute 0, = Bf,0,By

From the RBM a representation of the solution in the
high-dimensional Hilbert space C* can then be obtained by
By, (1), which scales linearly in N. However, typically
this is not needed for any practical purpose—which is one of
the strengths of the RBM framework. Most importantly the
computation of an output functional can indeed be performed
in a complexity independent of A/ using

R m
On(i;p) =) @, (15P) Y oroi(W) O, i) (18)

r=1 i=1

with precomputed 0, = B;,O,BN. In turn, the output evalu-
ation g — Oy(i; p) becomes independent of N and only
depends on N, Q, and R.

The algorithm is schematically summarized in Algo-
rithm 2.

IV. RESULTS

We test the methodology on the two example applications
introduced in Secs. I A and II B. The former is interesting as
it allows to consider different chains of variable lengths and
analyze the structure factors. The latter is interesting since it
contains degeneracies due to symmetries allowing to test the
methodology in this case.

To conduct our benchmarking tests, we implemented
the method, as outlined above, in JULIA [38]. For our
computation we exploit the sparsity of the Hamiltonians
H(p) using compressed sparse column matrix storage. The
exact ground states have been obtained iteratively using
the locally optimal block preconditioned conjugate gradient

Algorithm 2. Overview of the online step.

Data: rbm,,, 0,, p € IP

Result: A (1), Oy (1 p)

Ab(1), @ (@) < rb-solver(rbm,,) (13)
Oy (p; p) < rb-output(@., (1)) (18)
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(LOBPCG) algorithm [39—41] as implemented in the density-
functional toolkit (DFTK) [42,43] using an incomplete
(sparse) Cholesky factorization as a preconditioner. Whenever
a truth solve needs to be performed and a reduced basis al-
ready exists, we use the RBM approximation as a surrogate
to provide an accurate initial guess. We ensure the correct
number of degenerate ground states is found by adapting the
number of targeted eigenpairs during the iterative diagonal-
ization until the obtained eigenvalue gap is larger than the
convergence tolerance. Our scheme has been carefully verified
to obtain the correct number of eigenpairs even in the highly
degenerate cases of the antiferromagnetic spin-% triangles.
Notice that for the chain of Rydberg atoms the LOBPCG
sometimes fails to converge within a given number of itera-
tions. In such cases we fall back to a full diagonalization of the
Hamiltonian using a direct method. This happens especially
frequently in the interstitial region between two clear phases.
Overcoming this limitation, e.g., by including not only the
ground state but also the closest manifolds of excited states in
the reduced basis, is an interesting direction for future work.
In the upcoming analyses, we will use
erfyg = max M (19)
PeBrex 1A ()l

in order to assess the quality of the reduced basis approxi-
mation to the eigenvalue over a given test grid Eg that is
different from the training grid Ei,,. The computation of the
eigenvector error is slightly more complicated with degenerate
ground states. For that purpose we will compare the spectral
projectors onto the different eigenspaces given by the density
matrices; i.e., we will consider the following error quantity,

X ()W ()" — oty ()Pro ()| ¢
[ () ()| 7 ’
where ®,(pt) = By, ¢, (1), the Ritz vector(s), and || - || de-

notes the Frobenius norm. Furthermore, the output functional
will be measured as

errvec = ma.

ME Erest

(20)

erry = max 1S(u; - ) — Sep(i; ‘)”F, 21

HEE e IS; llF
where the truth structure factor S and its reduced basis ap-
proximation Sy, are evaluated on a fine enough grid in Fourier
space.

Note that we use equispaced training and test grids. As
an alternative, one can use random training grids, such as
proposed in Ref. [44] for greedy strategies, but one may not
discover special cases and degeneracies arising at very partic-
ular parameter values, such as diagonals in parameter space,
etc.

In both our test cases, we investigate the properties of the
greedy algorithm, analyze the convergence of the reduced
basis approximation with respect to the basis size N, and
compare it with the optimal decay revealed by the singular
values of the snapshot matrix discussed at the beginning of
this section. Let us emphasize that the greedy algorithm does
not require the truth solution at all grid points; we only use
them here in order to measure the error in different metrics
to assess the quality of the greedy algorithm, but this is a
truly academic investigation. Furthermore, we will present

1001 g
N, -8
Ni=9
o b
e, NI =12
o’ N,=13
N =14
< 10'F
=)
RS
@
< 1072 F
103}
—4 [ ! “v ‘.". .:::.':". .,
1
"% 25 50 75 100
N

FIG. 4. Decay of the maximal residual over the training grid
Erin during the greedy algorithm with respect to N for chains of
Rydberg atoms of different lengths N,. The singular values are dotted
as a reference.

results on the output functional in the form of the appropriate
structure factors as defined above.

A. Chain of excited Rydberg atoms

Here, we consider a chain of excited Rydberg atoms of
varying size N, as in Eq. (5) and a parameter domain P =
[0, 5]x[0.5, 4], where we recall that u; = A/Q and u, = ng.
We apply the greedy-sampling strategy outlined in Sec. III
using a training grid Egin consisting of 50x50 uniformly
spaced points in IP. The evolution of the maximal residual over
the training grid Ey.,;, during the offline step is illustrated in
Fig. 4, where we also show the decay of the singular values.
We observe that the decay of the residual nicely follows the
decay of the singular values up to a constant offset. As was
already observed for the decay of the singular values, the ef-
fective dimension N for fixed tolerance only increases mildly
for increasing N, .

In order to give an illustration how the greedy algorithm
acts, we show in Fig. 5 the error profiles for different values
of N for the one-dimensional parameter space along the line

10 : H

: I |——n=2

- I |l—n=4

: - |—n=6

10°F: N\ ] n=8
: N\
T : \:
S 10t} :
0 : I
[U] . -
— - 5
: ‘\5
w07 ‘E
::“ -
: k
1 :
1073 : 5

FIG. 5. Illustration of the greedy algorithm for a one-
dimensional parameter space {4.5}x[0.5, 4] in the case of a chain
of Rydberg atoms with N, = 13.
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FIG. 6. Decay of the error quantities of the RBM and the residual
during the greedy algorithm with respect to N for a chain of Rydberg
atoms with N, = 13.

of fixed u; = 4.5 (corresponding to the orange line in the
upcoming Fig. 8). We illustrate the profile of the residual over
the one-dimensional parameter space during the greedy itera-
tions, i.e., for different values of n = 2, 4, 6, 8. The maximum
of each curve is marked by a dot and the first eight sample

points p, (n=1,...,8) by vertical lines. We observe that
in agreement with theory, at each iteration n, the residuals
vanish at the sample points u;, fori =1, ..., n — 1, since the

truth solution at those points already belongs to the reduced
basis space. By always adding the worst approximation (as
quantified by the residual), this approach allows us to reduce
the maximum residual over the parameter space and over the
iterations n, though not necessarily in a monotonic fashion
(see also Fig. 4).

Returning to the two-dimensional parameter domain, we
test in Fig. 6 the actual errors efrryg, €rfyec, and errg of the
eigenvalue, eigenvector, and structure factors, respectively, for
an increasing sequence of N for fixed N, = 13. For testing,
we use a test grid Eeg consisting of 49 x49 uniformly spaced
points in P that are different from those in the training grid
Eirain- For comparison we also illustrate the evolution of the
residual. We observe that the error surrogate given by the
residual follows closely the real error in the eigenvector and an
accelerated convergence of the eigenvalues, which is typical
and expected for variational eigenvalue approximations. The
fact that the eigenvector error, the residual, and the singular
values exhibit the same decay rate means that the greedy
strategy assembles the reduced basis in a quasioptimal fashion
in this test case. Figure 7 shows the distribution of the eigen-
value error and eigenvector error over the test grid Sy for
N = 100 and N, = 13 as well as the sample points selected by
the greedy algorithm. Both eigenvalue and eigenvector errors
show very similar behavior with roughly a constant offset in
the error values. The larger errors in the eigenvectors are to
be expected due to the faster decay in the eigenvalue error
apparent in Fig. 6.

Furthermore, Fig. 8 shows the highest occupation number
of the states in the canonical basis for the same parameters
as considered above for N = 20 and N = 100. In the eyeball
norm, one can only detect small differences, for instance in
the transition between the Z, and Zj3 crystalline phases.

(a) 4 px.x  x X X X X X X —4.0
X
X
2 X ? x RS X —-4.5
X X X
X v x X -5.0
X X
’ e = * Pl-ss
o X n X .
g 3 X
‘” 2 F b i X ><>< X X = o hﬁ 0
3 X x
% X o = X < +—6.5
X X x
e % g F—7.0
1 _><-E>< J > X X X
X X g 2 L-7.5
>|< X }< X 1 X 1 1 >|< __8.0
0 1 3 5
n =4/ logg
(b) 4 Fx..x . x X XXX X -1.0
X
x
! X 5 X ® -1.5
X X X
X . x X -2.0
Fox X
3 X a2 RS X X
- 2 X . 2 F—2.5
e 3 X
| X x x Xy N X% -—3.0
<21 2 X X x x x = i<
X K ><>< X A F—3.5
X
X 2 X X
« A X ” ’_& F—4.0
P X % % % 2 S
1F x X < X 45
X X X F—4.
>|< X ?< X 1 X 1 1 >|< __5.0
0 1 2 3 4 1
o= A/Q 0810

FIG. 7. Logarithmic distribution of the (a) eigenvalue error and
(b) eigenvector error of the RBM for N = 100 over the parameter
domain and the sample points selected by the greedy algorithm
(crosses) for a chain of Rydberg atoms with N, = 13. The purple
dot denotes a specific parameter set that is examined in more detail
in later figures.

In order to identify the dominant modes, we illustrate
in Fig. 9 the structure factors along the vertical line with
w1 = A/ =4.5 for N = 100. We observe that the RBM can
capture faithfully the distinct arrangements of Rydberg excita-
tions inside the different lobes, namely, their Z, character with
£ a divisor of N, — 1. Certainly, given the number of Rydberg
atoms that we consider here, one cannot expect to resolve even
further details about the phase diagram such as the nature of
the narrow floating phase between the lobes or the nature of
the quantum phase transitions in this model [28-33].

In Fig. 10 we show the convergence of the structure factor
for fixed p = (4.5, 3.7) (corresponding to the purple point in
Figs. 7 and 8 and the vertical purple line in Fig. 9) for different
values of N = 2, 4, 8 besides the structure factors of the pure
state Z4. This point p was chosen such that it is not close to
any sampling point of the greedy assembly (see Fig. 7). We
observe a very fast convergence in the eyeball norm.

B. Antiferromagnetic spin-% triangles in La;Cu3zMoO;,

We consider the antiferromagnetic lattice model of Eq. (9)
with varying sizes Ny, N, and a parameter domain

P = [0, 2] x [0, 2] x [0.01, O.1],
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FIG. 8. The occupation number using the RBM with (a) N = 20
and (b) N = 100 over the parameter domain for a chain of Rydberg
atoms with N, = 13. The orange line at ©; = 4.5 indicates the di-
rection along which the structure factor is plotted in Fig. 9 and the
purple dot denotes the value at which its convergence is discussed
in Fig. 10.

where we recall that w, = J,/J3, up = J»/J3, and u; =J'.
In this regime, the model constitutes an interesting stress test
for our method, since it exhibits (for small J’) ground-state
manifolds with a degree of degeneracy that varies across the

mr — —_— 1.0
|
— 0.5
us
3 B
0
[ ——
< o [ 00
|— L-1.0
-3t e |
|
—' —
-Tr f | i !
1 2 3 4
My =TNg

FIG. 9. The structure factor (in logarithmic scale) using the RBM
as a function of u, = ng for fixed u; = 4.5 and the wave number k
for a chain of Rydberg atoms with N, = 13. The purple line indicates
the parameter value at which the convergence of the structure factor
is discussed in Fig. 10.

A
I\\ “ —tr4uth
15 | —— N=2
| |\ -— N=14
—— N=8
- 4] —
10} | | I\ | |
| | ||
05} | | Iy |
) I ‘ |
N i \
00 b A . /I 7
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FIG. 10. The structure factor (in logarithmic scale) using the
RBM for different values of N and fixed u = (4.5, 3.7) for a chain
of Rydberg atoms with N, = 13. For sake of completeness, we also
illustrate the solution of the truth (exact) model and the structure
factor of the pure Z4 mode. Grey crosses are used to highlight the
position of the truth curve, which is almost perfectly overlaid by the
result obtained in the N = 8 basis.

parameter domain. More specifically, we find numerically the
maximal degree of degeneracy itself to increase with Ny, N, as
2NNy - Another reason why we focus on the above parameter
regime is that this region was previously considered for the
compound La;Cuz;MoOy,.

Again, we apply the greedy-sampling strategy outlined
in Sec. III first using a training grid Ey,y, consisting of
10x 10x 10 uniformly spaced points in IP. The evolution of the
residual during the offline step is illustrated in Fig. 11, where
we also show the decay of the singular values as reference.
Also in this case, we observe that the decay of the residual
nicely follows the decay of the singular values. Ensured by
this observation we switch to a larger training grid Eii, of
20x20x20 uniformly spaced points in P in the remainder
of this section. Note that a ground truth computation on all
8000 parameter values is computationally very demanding for
the larger triangle systems. For this reason an investigation of

10t
— N,=1,N,=3
—  N,=LN,—4
0 — N,=2N,=2
10 —— N,=2N,=3
—  N,=3N,-1
— N,=3,N, =2
— —1 —— N, =4,N,=1
© 10
=}
S
o
2102}
103 |
—4 . 1 RSO "-| J
107, 50 100 150 200
N

FIG. 11. Decay of the residual during the greedy algorithm with
respect to N for the triangle models of different lengths N, N,. A
uniformly spaced grid of 10x10x 10 points was used for training.
The singular values are dotted as a reference.
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FIG. 12. Decay of the error quantities of the RBM and the
residual during the greedy algorithm with respect to N for the tri-
angular lattice model with N, = 2, Ny, = 2. A uniformly spaced grid
of 20x20x20 points was used for training and a testing grid of
19x19x 19 points distinct to Ey,5,. The mean values of the corre-
sponding quantity over the test grid B are dotted.

the singular value decay as well as the eigenvalue error is not
attempted here.

For an RBM trained on the E.,, the decay of the ap-
proximation errors for different values of N is reported in
Fig. 12 using a test grid with 19x19x 19 points different from
Eirain- We can clearly observe a stagnation of the eigenvector
erTor erryec, measured as in Eq. (20) in the early phase of
the greedy algorithm. This can be explained as follows. For
small numbers N of basis functions, the approximability of
the RBM is still quite inaccurate and might even fail to get the
degeneracy right. As a result, the error in the density matrix
@, ()P ()" is of order one. As the number N increases,
this issue is cured and we observe the normal behavior of
error reduction. In order to shed more light on this point, we
also report in Fig. 12 the mean values of the error quantities
over the test grid Eicy, 1.€., replacing max ez, by an average
over Eyy, and we observe that the stagnation of the error does
not occur in this mean quantity, which implies that the wrong
prediction of the degeneracy only occurs within a small subset
of points in Bieg.

Physically, what happens in this quantum spin model
throughout most of the considered parameter space is that
each triangle forms a single effective spin-% degree of free-
dom (as long as Ji, J, and Js3 are not all equal), and
these moments are then coupled by the intertriangle ex-
change terms J' > 0 to form an ordered ground state in
the thermodynamic limit [34,35]. The onset of the corre-
sponding spin ordering pattern can already be identified by
examining the structure factor S(u; k) on comparably small
system sizes. Of particular interest are the values of S at the
specific momenta k = (0, 7) and (i, 0), since these mixed
ferromagnetic-antiferromagnetic states occupy most of the
considered parameter regime f, and we concentrate here on
the results for N, = N, = 2, for which both these momenta are
present for the considered periodic boundary conditions. For
this model our greedy approach allows to construct small, but
accurate reduced basis models. For example, with only N =
50 basis vectors an eigenvalue error below 107° is obtained

2.0F X XXX XX —5.0
[ -5.5
15F X
» X -6.0
~ X X
&
~ 1.0t » £ | }-65
I X X X X
< 3 I 7.0
0.5 v
X X F—7.5
X
0.0 X X X | | XX L_8.0
00 05 1.0 15 20 Iog,
K= Ji/ Ty

FIG. 13. Logarithmic distribution of the eigenvalue error of the
RBM for N = 50 over the parameter domain and the sample points
selected by the greedy algorithm (crosses) for the triangle model with
N, =2, N, = 2. The maximal error across all values of 3 =J'/J;
is shown and sampling points are projected onto the (-, plane.

across the full parameter range (compare Fig. 13). Based on
an RBM with N = 62 we thus consider in Fig. 14 the value
of the structure factor at the k = (0, r) and (;r, 0) momenta
for a value of J'/J; = 0.1. We observe in particular the pre-
dominance of the (;r, 0) ordering in the upper right part of the
considered parameter regime and along the line 41 = ;. An
inspection of the full momentum-resolved structure factor (not
shown here) indeed verifies that no other momenta provide a
more dominant contribution to the magnetic structure factor.
For the considered system size, the remainder of the w-u,
plane is dominated by the rotated (0, 7 ) state. We note that
there is only a rather narrow region around the isotropic point
J1 = J, = J3, for which a fully antiferromagnetic state (7, )
prevails on larger lattices [34,35].

We also tested our greedy RBM approach on larger system
sizes of the triangular lattice model, namely, Ny =2, N, =3
as well as N, =3, N, =2. Both settings feature a Hilbert
space dimension beyond 250 000. Nevertheless, an RBM
model with N = 163—Iess than a thousandth of the Hilbert-
space size—is sufficient to obtain an eigenvector residual
below 0.1 and a qualitative representation of the structure fac-
tor. However, note that these system sizes are less suitable to
examine which ordered phase emerges in the thermodynamic
limit: systems with an odd number of unit cells in periodic
boundary conditions give rise to frustration of the antiferro-
magnetic alignment of the trimer spins along the directions
with an odd number of repeats.

Finally, let us illustrate to what extent the reduced basis is
useful as an initial guess for the computation of truth solu-
tions. Indeed, it allows us to save noticeably on the number of
iterations required to obtain the converged ground states. For
the triangle model with N, = N, = 2, for example, a naive
guess (using a previously computed neighboring point on
the grid Eg) requires around 18 000 LOBPCG iterations to
converge all ground states on our test grid of size 9° = 729. In
contrast employing the reduced basis with N = 62 as a guess
one obtains all ground states using only a total number of
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FIG. 14. The structure factor of the triangle model with N, = 2,
N, =2, and J'/J; = 0.1 at the k points (a) (0, ) and (b) (i, 0) for
N =62.

around 1600 iterations, again for all points in the grid. It turns
out that the accuracy of the reduced basis is important though.
For example, if only N = 50 is taken only 25% iterations are
saved; i.e., around 13 000 iterations are needed.

V. CONCLUSIONS

In this article, we applied the reduced basis method
(RBM) to parametrized quantum spin systems. Such systems
naturally lead to Hamiltonians which feature an affine decom-
position. In this work we exploit this structure in the context
of the RBM in order to explore phase diagrams and other
output quantities in a complexity that is independent of the
dimension of the Hilbert space. The required reduced basis
is built up using a greedy strategy based on the residual as
an error surrogate, requiring only a small number of exact
ground-state computations (around 20) to already reach a
qualitative result. We tested the methodology for two sys-

tems, a one-dimensional chain of excited Rydberg atoms and
a geometrically frustrated antiferromagnetic two-dimensional
spin-% lattice model.

This proof of concept was already quite conclusive. First,
at the range of number of sites considered in this article,
the manifold of ground states can be approximated by a
surprisingly low-dimensional approximation space. From a
theoretical viewpoint it would be interesting to understand the
growth of the effective dimension of the solution manifold
for larger numbers of particles. From a numerical perspective,
the greedy strategy which uses the residual of the eigenvalue
problem as error surrogate turned out to be reliable in gen-
erating reduced basis spaces in the considered tests cases.
Further, the greedy algorithm was able to deal with degenerate
ground states while being very efficient in the number of
high-dimensional computations. Accurate reduced bases were
assembled and the decay rate of the error is similar to the
(optimal) one from the singular values. The reduced basis
method was able to reproduce output functionals, such as
structure factors or occupation numbers, fairly accurately and,
e.g., only 20 basis functions (thus requiring only 20 expensive
truth computations) were needed to provide a qualitatively
correct occupation number plot in the case of the Rydberg
chain model. Further, the method was surprisingly accurate
in describing the sharp transition between the Zs3 and Z4
crystalline phase with so few basis functions.

To what extent this favorable reduction of computational
cost enabled by the greedy strategy generalizes to other
quantum spin models is an interesting direction for future
work. In particular, whether one can expect the RBM to
perform well on systems, in which the degree of entanglement
varies across the parameter space, is an open research
problem. Our expectation is that this should not be significant
with respect to the effectiveness of the RBM provided
that the small corner of the Hilbert space that is actually
entangled within the ground-state wave function does not
vary drastically under small parameter variations. In this
case a small number of truth solves should be sufficient
to capture each relevant Hilbert-space corner across the
parameter domain. Moreover, we emphasize that even on
unseen systems the greedy strategy can be employed readily,
since a careful monitoring of the decay of the residual gives
direct insight whether the obtained reduced basis provides a
good approximation within the studied parameter space.

One of the current limitations of our implementation, but
not of the methodology itself, seems to be the use of standard
eigensolvers such as the LOBPCG method to compute the
(truth) ground states. As a perspective, we aim in future work
to perform this task via more sophisticated tensor network
methods, which efficiently deal with a larger number of micro-
scopic constituents. They can in principle be embedded in a
natural way as a black-box solver within the RBM framework,
since they easily give access to the scalar products and matrix
elements needed to construct the RBM surrogate model.

Another potential application of this methodology—
besides the fast scan of phase diagrams—is the use of the
surrogate model in order to generate initial guesses for more
advanced eigenvalue solvers at a generic point in parameter
space. We actually already exploited this strategy in our im-
plementation whenever we needed to compute a truth solution
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and a reduced basis was available. We demonstrated an initial
guess provided by an accurate reduced basis to lead to ten
times fewer iterations in the eigenvalue solver compared to
the naive approach of employing the solution of a neighboring
parameter value.
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