001     907255
005     20230522125350.0
024 7 _ |a 10.21468/SciPostPhys.12.3.107
|2 doi
024 7 _ |a 2128/31040
|2 Handle
024 7 _ |a WOS:000782238100014
|2 WOS
037 _ _ |a FZJ-2022-01924
082 _ _ |a 530
100 1 _ |a Contessi, Daniele
|0 P:(DE-Juel1)187565
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks
260 _ _ |a Amsterdam
|c 2022
|b SciPost Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650343903_7591
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The detection of phase transitions in quantum many-body systems with lowest possible prior knowledge of their details is among the most rousing goals of the flourishing application of machine-learning techniques to physical questions. Here, we train a Generative Adversarial Network (GAN) with the Entanglement Spectrum of a system bipartition, as extracted by means of Matrix Product States ans\"atze. We are able to identify gapless-to-gapped phase transitions in different one-dimensional models by looking at the machine inability to reconstruct outsider data with respect to the training set. We foresee that GAN-based methods will become instrumental in anomaly detection schemes applied to the determination of phase-diagrams.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a PASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482)
|0 G:(EU-Grant)817482
|c 817482
|f H2020-FETFLAG-2018-03
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ricci, Elisa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Recati, Alessio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rizzi, Matteo
|0 P:(DE-Juel1)177780
|b 3
773 _ _ |a 10.21468/SciPostPhys.12.3.107
|g Vol. 12, no. 3, p. 107
|0 PERI:(DE-600)2886659-9
|n 3
|p 107
|t SciPost physics
|v 12
|y 2022
|x 2542-4653
856 4 _ |u https://juser.fz-juelich.de/record/907255/files/SciPostPhys_12_3_107.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907255
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187565
910 1 _ |a Dipartimento di Fisica, Università di Trento & INO-CNR BEC Center, 38123 Povo, Italy
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)187565
910 1 _ |a Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, & Deep Visual Learning research group, Fondazione Bruno Kessler (FBK), 38123 Povo, Italy
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Dipartimento di Fisica, Università di Trento & INO-CNR BEC Center, 38123 Povo, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177780
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-19T09:27:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-19T09:27:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2021-04-19T09:27:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21