Home > Publications database > Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks > print |
001 | 907255 | ||
005 | 20230522125350.0 | ||
024 | 7 | _ | |a 10.21468/SciPostPhys.12.3.107 |2 doi |
024 | 7 | _ | |a 2128/31040 |2 Handle |
024 | 7 | _ | |a WOS:000782238100014 |2 WOS |
037 | _ | _ | |a FZJ-2022-01924 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Contessi, Daniele |0 P:(DE-Juel1)187565 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks |
260 | _ | _ | |a Amsterdam |c 2022 |b SciPost Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1650343903_7591 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The detection of phase transitions in quantum many-body systems with lowest possible prior knowledge of their details is among the most rousing goals of the flourishing application of machine-learning techniques to physical questions. Here, we train a Generative Adversarial Network (GAN) with the Entanglement Spectrum of a system bipartition, as extracted by means of Matrix Product States ans\"atze. We are able to identify gapless-to-gapped phase transitions in different one-dimensional models by looking at the machine inability to reconstruct outsider data with respect to the training set. We foresee that GAN-based methods will become instrumental in anomaly detection schemes applied to the determination of phase-diagrams. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a PASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482) |0 G:(EU-Grant)817482 |c 817482 |f H2020-FETFLAG-2018-03 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ricci, Elisa |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Recati, Alessio |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rizzi, Matteo |0 P:(DE-Juel1)177780 |b 3 |
773 | _ | _ | |a 10.21468/SciPostPhys.12.3.107 |g Vol. 12, no. 3, p. 107 |0 PERI:(DE-600)2886659-9 |n 3 |p 107 |t SciPost physics |v 12 |y 2022 |x 2542-4653 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907255/files/SciPostPhys_12_3_107.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907255 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187565 |
910 | 1 | _ | |a Dipartimento di Fisica, Università di Trento & INO-CNR BEC Center, 38123 Povo, Italy |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)187565 |
910 | 1 | _ | |a Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, & Deep Visual Learning research group, Fondazione Bruno Kessler (FBK), 38123 Povo, Italy |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Dipartimento di Fisica, Università di Trento & INO-CNR BEC Center, 38123 Povo, Italy |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177780 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-04-19T09:27:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-04-19T09:27:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2021-04-19T09:27:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-8-20190808 |k PGI-8 |l Quantum Control |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-8-20190808 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|