000907268 001__ 907268
000907268 005__ 20230522125342.0
000907268 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.034204
000907268 0247_ $$2ISSN$$a2475-9953
000907268 0247_ $$2ISSN$$a2476-0455
000907268 0247_ $$2Handle$$a2128/31044
000907268 0247_ $$2altmetric$$aaltmetric:126931562
000907268 0247_ $$2WOS$$aWOS:000779841200005
000907268 037__ $$aFZJ-2022-01930
000907268 082__ $$a530
000907268 1001_ $$0P:(DE-Juel1)180679$$aNabok, Dmytro$$b0$$ufzj
000907268 245__ $$aBulk and surface electronic structure of Bi 4 Te 3 from G W calculations and photoemission experiments
000907268 260__ $$aCollege Park, MD$$bAPS$$c2022
000907268 3367_ $$2DRIVER$$aarticle
000907268 3367_ $$2DataCite$$aOutput Types/Journal article
000907268 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650375445_5548
000907268 3367_ $$2BibTeX$$aARTICLE
000907268 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907268 3367_ $$00$$2EndNote$$aJournal Article
000907268 520__ $$aWe present a combined theoretical and experimental study of the electronic structure of stoichiometric Bi4Te3, a natural superlattice of alternating Bi2Te3 quintuple layers and Bi bilayers. In contrast to the related semiconducting compounds Bi2Te3 and Bi1Te1, density functional theory predicts Bi4Te3 is a semimetal. In this work, we compute the quasiparticle electronic structure of Bi4Te3 in the framework of the GW approximation within many-body perturbation theory. The quasiparticle corrections are found to modify the dispersion of the valence and conduction bands in the vicinity of the Fermi energy, leading to the opening of a small indirect band gap. Based on the analysis of the eigenstates, Bi4Te3 is classified as a dual topological insulator with bulk topological invariants Z2 (1;111) and magnetic mirror Chern number nM=1. The bulk GW results are used to build a Wannier-function-based tight-binding Hamiltonian that is further applied to study the electronic properties of the (111) surface. The comparison with our angle-resolved photoemission measurements shows excellent agreement between the computed and measured surface states and indicates the dual topological nature of Bi4Te3.
000907268 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907268 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907268 7001_ $$0P:(DE-Juel1)159202$$aTas, Murat$$b1
000907268 7001_ $$0P:(DE-HGF)0$$aKusaka, Shotaro$$b2
000907268 7001_ $$00000-0002-0639-5862$$aDurgun, Engin$$b3
000907268 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b4$$ufzj
000907268 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b5
000907268 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6
000907268 7001_ $$00000-0002-2574-1708$$aHirahara, Toru$$b7
000907268 7001_ $$0P:(DE-HGF)0$$aAguilera, Irene$$b8$$eCorresponding author
000907268 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.034204$$gVol. 6, no. 3, p. 034204$$n3$$p034204$$tPhysical review materials$$v6$$x2475-9953$$y2022
000907268 8564_ $$uhttps://juser.fz-juelich.de/record/907268/files/PhysRevMaterials.6.034204.pdf$$yOpenAccess
000907268 909CO $$ooai:juser.fz-juelich.de:907268$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180679$$aForschungszentrum Jülich$$b0$$kFZJ
000907268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b4$$kFZJ
000907268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b5$$kFZJ
000907268 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ
000907268 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907268 9141_ $$y2022
000907268 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907268 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907268 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907268 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907268 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000907268 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000907268 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000907268 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000907268 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000907268 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000907268 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000907268 980__ $$ajournal
000907268 980__ $$aVDB
000907268 980__ $$aUNRESTRICTED
000907268 980__ $$aI:(DE-Juel1)IAS-1-20090406
000907268 980__ $$aI:(DE-Juel1)PGI-1-20110106
000907268 980__ $$aI:(DE-82)080009_20140620
000907268 980__ $$aI:(DE-82)080012_20140620
000907268 980__ $$aI:(DE-Juel1)JSC-20090406
000907268 9801_ $$aFullTexts