000907278 001__ 907278
000907278 005__ 20230522125342.0
000907278 0247_ $$2doi$$a10.1088/1361-6668/ac64cd
000907278 0247_ $$2ISSN$$a0953-2048
000907278 0247_ $$2ISSN$$a1361-6668
000907278 0247_ $$2Handle$$a2128/31046
000907278 0247_ $$2WOS$$aWOS:000784122300001
000907278 037__ $$aFZJ-2022-01940
000907278 041__ $$aEnglish
000907278 082__ $$a530
000907278 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author
000907278 245__ $$aTiN nanobridge Josephson junctions and nanoSQUIDs on SiN-buffered Si
000907278 260__ $$aBristol$$bIOP Publ.$$c2022
000907278 3367_ $$2DRIVER$$aarticle
000907278 3367_ $$2DataCite$$aOutput Types/Journal article
000907278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676461334_10243
000907278 3367_ $$2BibTeX$$aARTICLE
000907278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907278 3367_ $$00$$2EndNote$$aJournal Article
000907278 520__ $$aWe report the fabrication and properties of titanium nitride (TiN) nanobridge Josephson junctions (nJJs) and nanoscale superconducting quantum interference devices (nanoSQUIDs) on SiN-buffered Si substrates. The superior corrosion resistance, large coherence length, suitable superconducting transition temperature and highly selective reactive ion etching (RIE) of TiN compared to e-beam resists and the SiN buffer layer allow for reproducible preparation and result in long-term stability of the TiN nJJs. High-resolution transmission electron microscopy reveals a columnar structure of the TiN film on an amorphous SiN buffer layer. High-resolution scanning electron microscopy reveals the variable thickness shape of the nJJs. A combination of wet etching in 20% potassium hydroxide and RIE is used for bulk nanomachining of nanoSQUID cantilevers. More than 20 oscillations of the V(B) dependence of the nanoSQUIDs with a period of ∼6 mT and hysteresis-free I(V) characteristics (CVCs) of the all-TiN nJJs are observed at 4.2 K. CVCs of the low-Ic all-TiN nJJs follow theoretical predictions for dirty superconductors down to ∼10 mK, with the critical current saturated below ∼0.6 K. These results pave the way for superconducting electronics based on nJJs operating non-hysteretically at 4.2 K, as well as for all-TiN qubits operating at sub-100 mK temperatures.
000907278 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907278 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
000907278 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907278 7001_ $$0P:(DE-Juel1)185769$$aFiadziushkin, Hleb$$b1
000907278 7001_ $$0P:(DE-Juel1)186071$$aFrohn, Benedikt$$b2
000907278 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, P.$$b3
000907278 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b4
000907278 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ac64cd$$gVol. 35, no. 6, p. 065001 -$$n6$$p065001 -$$tSuperconductor science and technology$$v35$$x0953-2048$$y2022
000907278 8564_ $$uhttps://juser.fz-juelich.de/record/907278/files/Faley_2022_Supercond._Sci._Technol._35_065001.pdf$$yOpenAccess
000907278 8767_ $$d2022-07-22$$eHybrid-OA$$jPublish and Read
000907278 909CO $$ooai:juser.fz-juelich.de:907278$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000907278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000907278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185769$$aForschungszentrum Jülich$$b1$$kFZJ
000907278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186071$$aForschungszentrum Jülich$$b2$$kFZJ
000907278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b3$$kFZJ
000907278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000907278 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907278 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
000907278 9141_ $$y2022
000907278 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907278 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907278 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000907278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2021$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907278 920__ $$lyes
000907278 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907278 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000907278 980__ $$ajournal
000907278 980__ $$aVDB
000907278 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907278 980__ $$aI:(DE-Juel1)PGI-9-20110106
000907278 980__ $$aAPC
000907278 980__ $$aUNRESTRICTED
000907278 9801_ $$aAPC
000907278 9801_ $$aFullTexts