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Abstract

Nuclear spin polarization and its phenomena have been studied since the early
days of quantum mechanics. Today, in particular, nuclear spin polarized hydrogen
and deuterium are used in many ways, e.g. as target material or in the form of
polarized beams. One way of measuring the polarization of such a beam is the Lamb-
shift polarimeter. In an experiment conducted at the Institut für Kernphysik of the
Forschungszentrum Jülich to study the influence of a Sona transition unit on the
polarization of a nuclear spin-polarized hydrogen beam, unexpected oscillations of the
occupation numbers of different hyperfine substates of hydrogen atoms as a function
of the magnetic field were discovered. The oscillations are induced within the Sona
transition unit, which allows an exchange of the occupation numbers of the α1 and
β3 states by reversing the direction of the magnetic field defining the quantization
axis.The transition energies between the different substates were in the range of only
a few neV.

In order to investigate this phenomenon further, a similar experiment is set up
in Jülich which allows measuring these oscillations of the occupation numbers of
metastable 2S1/2 hydrogen as well as the recording of the thereby produced spectra
of the two α states. In addition, an analysis method is developed and applied to
determine the energies of the transitions that occur between the different substates.
The aim of the method is to measure these transition energies with an accuracy that
allows the QED corrections to the classical Breit-Rabi formula to be detected.
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Zusammenfassung

Die Kernspinpolarisation und deren Phänomene werden seit den frühen Tagen
der Quantenmechanik untersucht. Heute werden insbesondere kernspinpolarisierter
Wasserstoff und Deuterium in vielfältiger Weise genutzt, entweder als Target oder
in Form von polarisierten Strahlen. Eine Möglichkeit die Polarisation eines solchen
Strahls zu messen ist das Lambshift-Polarimeter. In einem am Institut für Kernphysik
des Forschungszentrums Jülich durchgeführten Experiment zur Untersuchung des Ein-
flusses einer Sona-Übergangseinheit auf die Polarisation eines kernspinpolarisierten
Wasserstoffstrahls wurden unerwartete Oszillationen der Besetzungszahlen von ver-
schiedenen Hyperfeinstrukturunterzuständen der Wasserstoffatome als Funktion des
Magnetfeldes entdeckt. Die Übergänge werden innerhalb der Sona-Übergangseinheit
induziert, die einen Austausch der Besetzungszahlen der α1 und β3 Zustände durch
Umkehrung der Richtung des Magnetfeldes, welches die Quantisierungsachse definiert,
ermöglichen. Die Übergangsenergien zwischen den beobachteten Übergängen lagen
dabei im Bereich von einigen neV.

Um dieses Phänomen weiter zu untersuchen, wurde in Jülich ein ähnliches Ex-
periment aufgebaut, das die Messung der Oszillationen der Besetzungszahlen von
metastabilem 2S1/2-Wasserstoff sowie die Aufnahme der dabei erzeugten Spektren
der beiden α-Zustände erlaubt. Darüber hinaus wird eine Analysemethode entwickelt
und angewendet, um die Energien der Übergänge zwischen den verschiedenen Un-
terzuständen zu bestimmen. Ziel der Methode ist es, diese Übergangsenergien mit
einer Genauigkeit zu messen, die es erlaubt, die QED-Korrekturen zur klassischen
Breit-Rabi-Formel zu quantifizieren.
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Chapter 1

Introduction

Since the days of Joseph von Fraunhofer [1] with the discovery of absorption lines
in the optical spectrum of the Sun in 1814, the study of spectral lines became an
important field of research in modern physics. In 1897, Johann Jakob Balmer [2]
succeeded in the first mathematical description of such lines for hydrogen, but it was
not until the emergence of quantum mechanics in the 20th century that spectral lines
could be understood as transitions of electrons between different energetic bonding
states. During the 20th century, more and more precise methods were developed in
order to investigate these binding energies. For example, today, the transition between
the 1S1/2 and 2S1/2 states of hydrogen is measured with an uncertainty of 10−14eV
using 2-photon spectroscopy.

Some spectroscopy experiments as well as multiple other kinds of experiments
are conducted using nuclear spin-polarized hydrogen and deuterium atoms and ions.
Thereby, polarized beams as well as targets are of equally interest in experimental
nuclear physics. Polarization observables can be utilized as an additional quantity to
give deeper insights in physics of nuclear and particle reactions than with cross-sections
alone. One way to measure the polarization of particle beams with an accuracy of
1 % [3] is the Lamb-shift polarimeter, which utilizes the fact that the metastable 2S1/2

state and the very short-lived 2P1/2 state are separated by the Lamb-shift, but can
be coupled using the right combination of static electric and magnetic fields, and
a radiofrequency. At the Institut für Kernphsik at the Forschungszentrum Jülich
Lamb-shift polarimeters were and are in use in many experiments, like at the ANKE
experiment [4], or in recombination experiments where polarized atoms recombine to
molecules [5, 6]. However, this kind of polarimeter is only able to detect the α1 and
α2 substates. But for some experiments, like the BoB experiment [7], it is necessary
to be able to measure the β3 substate as well. Therefore, a combination of a Lamb-
shift polarimeter and a Sona transition unit was set up to allow such measurements,
because a Sona-transition unit is able to exchange the occupation numbers of the
hyperfine substates α1 and β3 by rotating the quantization axis faster than the Larmor
precession can follow. During the first experiments with this setup, it was discovered
that the Sona transition unit induces unexpected oscillations between the occupation
numbers of the different hyperfine substates of the metastable particles as a function
of the internal magnetic field of the Sona transition unit [8].
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This thesis is dedicated to further investigate these oscillations. Therefore, at the
Institut für Kernphysik an experiment is set up, including a Lamb shift polarimeter
and a Sona transition unit. Using an electron cyclotron ion source in combination
with the previously mentioned components, the oscillations between the occupation
numbers can be created and the recording of the thereby resulting α1 and α2 spectra.
Thereby, two main goals are pursued. The first is to measure the oscillation spectra
at a higher resolution than in the previous experiment, and the second is to calculate
the transition energies between the induced transitions accurately enough to detect
the QED correction to the Breit-Rabi formula [9]. Therefore, a new analysis method
is applied and tested that attempts to relate the structure of the spectra to the
Breit-Rabi formula.

The structure of this thesis is as follows. Firstly, in chapter 2, a theoretical intro-
duction to atomic physics and the physics of the different experimental components
are presented, as well as an introduction to the classical Breit-Rabi forumla and the
one which includes QED corrections. Afterwards, in chapter 3, the experimental setup
is explained in detail and problems of the setup which were discovered during and
after the measurements are discussed. In chapter 4, the measurement principle is
addressed, and the analysis method used in this thesis to investigate the measured
data is explained. At the end, in chapter 5, the results of the measurements and the
applied fitting method and its limits are critically discussed and an outlook on future
improvements and applications of the presented experiment is given.
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Chapter 2

Theoretical Framework

2.1 Atomic Theory

Since the classical antiquity, people developed the idea of atoms as the fundamental
building blocks of nature, from which everything is made of. They were considered
us uncuttable particles too small to be investigated. Since then, the knowledge about
atoms has dramatically increased.

The topic really accelerated at the end of the 19th century. In 1897, Joseph
J. Thomson [10] discovered the electron as a negative charged particle that is part of
atoms. This brought up the first models to describe the inner structures of atoms.
In 1907, Ernest Rutherford [11] could show with his famous experiment that inside
the atom exists a heavy nucleus, which is positively charged and includes nearly all
the mass of the atom. Based on this, in 1913, Niels Bohr [12] proposed his first atom
model of electrons bound on fixed trajectories around the nucleus. He stated, that
electrons are only allowed to possess angular momenta which are multiples of the
Plank constant h, and, thus, starting the idea of quantum mechanics.

In 1924, Louis de Broglie [13] postulated that particles can also process a wave-like
character. After this, Erwin Schrödinger [14] postulated his Schrödinger equation. For
the spinless electron, in the Dirac notation, the Schrödinger equation can be written
as

Ĥ|ψ〉 = E|ψ〉 , (2.1)

where Ĥ is the Hamilton operator of the electron, E its energy eigenvalues and |ψ〉
describes the state of the electron. In opposite to Bohr’s model, electrons do not
follow trajectories around the nucleus, but instead are just probability functions of
electrons located inside a volume. Later, in 1928 Paul Dirac [15] established a theory
also including relativity and spins of the electron into the model.

2.1.1 Hydrogen

Hydrogen is the most frequent element in the universe. On Earth, it is mostly
found bound in chemical compounds, among which water H2O is most common. In
experiments, most of the time atomic hydrogen is used, produced by dissociation of
molecular hydrogen H2.
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In nature, hydrogen occurs in three forms, two of which are stable, namely normal
hydrogen (1H), which consists of one proton and one electron, and deuterium (2H or D),
also called heavy hydrogen, whose nucleus contains an additional neutron. The third
form is tritium (3H or T) whose nucleus contains two additional neutrons. Tritium is
unstable and thus highly radioactive, making it difficult to use in experiments.

2.1.2 Angular Momentum

Each electron bound to an atomic orbit posses an orbital angular momentum. In
general, the angular momentum ~L is defined as

~L = ~r × ~p , (2.2)

where ~r is the rotational axis and ~p is the linear momentum. In quantum mechanics,
L̂, r̂ and p̂, as being observable variables, are expressed as operators, for which the
Equation 2.2 also holds. Applying the canonical commutation relation to r̂ and p̂ one
gets,

[r̂k, p̂l] = i~δkl , (2.3)

which is a representation of the Heisenberg uncertainty principle [16]. In combination
with Equation 2.2, it results in the commutation relation for the angular momentum,

[L̂k, L̂l] = i~εklmL̂m . (2.4)

As a consequence of Equation 2.4, only one component of the angular momentum
can be observed at the same time. L̂2 = L̂2

x + L̂2
y + L̂2

z commutes with its single
components L̂x,y,z,

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 . (2.5)

So, L̂2 and a single component L̂z 1 of an angular momentum can be measured
simultaneously. Their eigenfunctions |l,ml〉 can be defined as

L̂2|l,ml〉 = ~2 l (l + 1) |l,ml〉 , (2.6)

L̂2
z|l,ml〉 = ~ l|l,ml〉 . (2.7)

Using ladder operators L̂± = L̂x ± i L̂y, one can derive that

l = 0, 1, 2, ... or l = 1
2 ,

3
2 ,

5
2 , ... (2.8)

ml = −l, −(l − 1), ..., (l + 1), l . (2.9)

For an orbital angular momentum of an electron, only integer values are allowed
for l. Therefore, for an electron bound to an atomic orbit, one defines the quantum

1One usually uses the z-component.
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Figure 2.1: Scheme of the Stern-Gerlach experiment [18]. A beam of
silver atoms created by a furnace and a set of collimators splits inside

an inhomogeneous magnetic field created by two magnets.

number of the angular momentum `2 and the magnetic quantum number of the
angular momentum m`. The half integer values are a solution for the spin, which will
be explained in subsection 2.1.3.

For an electron on a specific electron shell, which is described by the principal
quantum number n, ` can take the following values

` = 0, 1, 2, ..., (n− 1) , (2.10)

while n ranges from 1 to the shell containing the weakest bound electron.

2.1.3 Stern-Gerlach Effect

In 1922, Otto Stern and Walther Gerlach [17] demonstrated that electric neutral
silver atoms posses a magnetic moment. They produced a beam of silver atoms using
an evaporating furnace and a set of collimators. The beam was guided through an
inhomogeneous magnetic field with a strong gradient in the vertical (z-) direction to
hit a photographic plate. A scheme of the experiment is shown in Figure 2.1.

Based on the theory of classical physics, the silver beam should have created a
picture with a continuous distribution. However, the observed picture showed two
from each other isolated impact positions on the photographic plate. Both positions
were shifted, one upward, one downward, contrary to a beam that did not traverse
an inhomogeneous magnetic field. Therefore, the atoms needed to carry a magnetic
moment ~µ, because the potential V inside the magnetic field ~B = B(z)~ez is given by

V = −~µ · ~B . (2.11)
2Note, that ` is only used for the angular momentum of an electron bound to an atomic orbit,

while l can stand for any angular momentum.
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The force created by this potential is given by

~F = −~∇ V = −µz ·
∂Bz
∂z

~ez . (2.12)

At that time, the quantization of the magnetic moment caused by a quantized an-
gular momentum was already expected. However, since half-integer quantum numbers
were still unknown, it was expected that the beam would split into an odd number of
(2`+ 1) beams according to the magnetic quantum number of the angular momentum
m`, and not into two as in the experiment.

A few years later, this phenomenon was explained with the electron spin. In 1925,
Samuel Goudsmit and George E. Uhlenbeck [19] introduced the idea of an intrinsic
angular momentum of the electron, the electron spin s. In 1927, Thomas E. Phipps
and John B. Taylor [20] repeated the Stern-Gerlach experiment with a beam of atomic
hydrogen and again observed a bisection of the beam, further supporting the electron
spin hypothesis.

The electron spin can only take values that are odd multiples of 1
2 . As later

discovered, not only electrons but every particle possess a spin. The spin describes a
fundamental property of particles, separating them in two classes, Bosons with integer
spins (s = 0, 1, 2, ...) and Fermions with half-integer spins (s = 1

2 ,
3
2 ,

5
2 , ...). The

spin behaves mathematically identical to an angular momentum. Therefore, for a
spin s, one can find the magnetic quantum number of the spin ms. Similar to m`

described in subsection 2.1.2, ms can take values of

ms = −s, −(s− 1), ..., (s+ 1), s . (2.13)

So in case of an electron, one has s = 1
2 , leading to two possible orientations in the

magnetic field, ms = +1
2 which is commonly referred to as "spin up" and ms = −1

2
which is referred to as "spin down". The projections on the quantization axis are
either sz = ±1

2~ and the magnetic moment µs created by the electron spin is given by

µs = −gs · µB ·ms, with µB = e · ~
2me

. (2.14)

µB is called the Bohr magneton, me is the electron mass, e is the elementary charge
and gs 3 is the Landé factor of the electron spin. When one assumes that the atoms
in the experiments were in the ground state (` = 0), the splitting of the beams can be
explained with the magnetic moment of the electrons, which can obtain two different
values.

2.1.4 Fine Structure

With the electron spin, it was now also possible to explain the structure of the spectral
lines. Already in 1887, Albert A. Michelson and Edward W. Morley [22] discovered

3gs ≈ 2.00231930436182(52)[21]
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fine splittings in the spectral lines of hydrogen. These are created by the interaction
of the magnetic moments created by the electron spin ~s and the angular momentum
of the electron ~̀. Both momenta combine to the total angular momentum of the
electron ~J , with

|~̀− ~s| ≤ | ~J | ≤ |~̀+ ~s| . (2.15)

The energy splitting ∆E`,s for hydrogen, created by this interaction, is

∆E`,s = a

2 [(J(J + 1)− `(`+ 1)− s(s+ 1)] . (2.16)

The quantity a is the spin orbit interaction constant.
Because the electron moves with near the speed of light c, ∆E`,s has to be cal-

culated using the theory of special relativity. This is the reason for an additional
relativistic energy correction

∆Er = −En
α2

n2

(
3
4 −

n

`+ 1
2

)
with α = e2

4π · ε0 · ~ · c
, (2.17)

where α ≈ 1
137 is the fine-structure constant, c the speed of light in vacuum and ε0 is

the dielectric constant.
Due to the uncertainty principle [16], the position of the electron can only be

given in a range of the Compton-length λC = ~
me·c . The electron in the electric field

of the nucleus is now affected by the field inside the volume λ3
C , which is taken into

account by adding the so called Darwin-term. In total, the energy splitting of the fine
structure En,j is given by

∆En,j =
[
1 + α2

n

(
1

j + 1
2
− 3

4n

)]
. (2.18)

2.1.5 Hyperfine Structure

Similar to the fine splitting, an even finer, the so-called hyperfine splitting, was
discovered. As mentioned in subsection 2.1.3, every particle posses a spin. As a
result, an atomic nucleus possesses a nuclear spin ~I, that is defined by the spins of the
nucleons. Nuclei consist of protons and neutrons, which are both fermions, possessing
a spin of 1

2 . Since the nucleus of hydrogen only consists of one proton, the nuclear
spin of hydrogen ~I is 1

2 as well. This nuclear spin creates a nuclear magnetic moment
µI with

~µI = −gI
µn
~
~I with µn = e · ~

2mP
, (2.19)

where gI is the nuclear-g-factor 4, µn is the core-magneton and mP is the mass of
the proton. Due to the mass ratio mp

me
≈ 1836, the magnetic moment created by the

4gI = 5.585694702(17)[21]
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proton spin is by about three orders of magnitude smaller than that of the electron.
Similar to the fine structure splitting, the magnetic moment of the total angular

momentum of the electron and the nuclear magnetic moment interact with one another,
resulting in the hyperfine structure. The total angular momentum of the electron and
the nuclear spin combine to the total angular momentum of the atom ~F , with

| ~J − ~I| ≤ |~F | ≤ | ~J + ~I| . (2.20)

The resulting energy splitting ∆EHFS can be calculated to

∆EHFS = ∆EHFS,0(n`j)
2 [F (F + 1)− J(J + 1)− I(I + 1)] , (2.21)

where ∆EHFS,0(n`j) 5 is the hyperfine structure constant, which is state dependent.
Therefore, the hyperfine structure splits the ground state (1S1/2) of hydrogen into

four substates. A triplet state with F = 1 and a singlet state with F = 0, which are
energetically separated by EHFS,0(n`j). The quantum mechanical description of the
four hyperfine states are

α1: |F = 1,mF = +1〉 = |mj = +1
2 , mI = +1

2〉 (2.22a)

α2: |1, 0〉 = 1√
2

[√
1 + a |+ 1

2 ,−
1
2〉+

√
1− a | − 1

2 ,+
1
2〉
]

(2.22b)

β3: |1,−1〉 = | − 1
2 ,−

1
2〉 (2.22c)

β4: |0, 0〉 = 1√
2

[√
1− a |+ 1

2 ,−
1
2〉 −

√
1 + a | − 1

2 ,+
1
2〉
]
, (2.22d)

with

a =
B
Bc√

1 +
(
B
Bc

)2
with Bc ≈

∆EHFS,0(n`j)
2µB

, (2.23)

where Bc 6 is the critical magnetic field strength. The spin orientations for the states
|2〉 and |4〉 have a dependency on an external magnetic field, whereas for |1〉 and, |3〉
the orientation is independent of an external magnetic field.

2.1.6 Lamb-shift

In 1937, by multiple research groups [23, 24, 25] another splitting in the spectrum of
hydrogen was discovered, which could not be explained by the interaction of the various
magnetic moments. In 1947, Willis E. Lamb and Robert C. Retherford [26] were able
to precisely measure this splitting, by measuring the energy levels of the temporal

5n`j is the standard notation of the electron orbit., e.g. 2S 1
2
stands for an electron with n = 2,

` = 0 and j = 1
2 .6For the S states of hydrogen Bc = 50.7 mT [4].
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Figure 2.2: Term scheme of the hydrogen atom [28]. (Modified from
source)

means to the 2P1/2 states of hydrogen and deuterium. For hydrogen, they found that
the 2S1/2 state has a 4.4× 10−6 eV lower binding energy than the 2P1/2 state.

This was explained in 1948 by Richard Feynman [27] in the framework of quantum
electrodynamics (QED). Most of the phenomenon can be explained due to effects like
vacuum fluctuations. In agreement with the uncertainty principle, for a short period
of time ∆t < h

∆E = 1
f , an electron can absorb or emit a photon with the energy

∆E = h · f without changing its state. This causes a trembling movement of the
electron, weakening the temporal means of the atomic potential. Because electrons
on a lower shell are closer to the nucleus, electrons with ` > 0 are less influenced by
this effect. Therefore, the 2S1/2 state is slightly less bound than the 2P1/2 state. A
term scheme of the hydrogen atom can be found in Figure 2.2.
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(a) Zeeman effect (b) Paschen-Back effect

Figure 2.3: A: Diagram to illustrate the Zeeman effect of the hyper-
fine splitting. ~J and ~I combine to ~F , which precesses around Bz.

B: Diagram to illustrate the Paschen-Back effect of the hyperfine split-
ting. The ~J-~I coupling is broken and they both precess around Bz.

2.1.7 Zeeman and Paschen-Back Effect of the Hyperfine Structure

As discussed in subsection 2.1.5, the total angular momentum of the electron ~J and
the nuclear spin ~I couple to the total angular momentum of the atom ~F . In a weak
external magnetic field Bext, with Bext < Bc, the coupling is preserved, however, ~F
precesses around the magnetic field direction Bz, see Figure 2.3a. In this case, the
total magnetic moment of the atom µF is defined by the sum of the total magnetic
moment of the electron µJ and the magnetic moment of the nuclear spin µI , with
respect to the quantization axis (z), µF is given by

〈µF 〉z = 〈µJ〉z + 〈µI〉z = −gF · µB ·mF , (2.24)

where gF is the g factor of the total angular momentum, with

gF = gj
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1) − gI
µI
µB

F (F + 1) + I(I + 1)− J(J + 1)
2F (F + 1) ,

(2.25)
where gj is the g-factor for the total angular momentum of the electron. Due to the
dependency on mF the magnetic field now removes the degeneration of the hyperfine
states with F > 0. The resulting energy correction is given by

∆EHFS,weak(Bz) = 〈 ~µF 〉z ·B = −mF · gF · µB ·Bz . (2.26)

Therefore, for hydrogen, the mixed states with antiparallel spins (|2〉 and |4〉) do not
have to be corrected, while the other two states with parallel spin (|1〉 and |3〉) do.
The effect is named after Pieter Zeeman [29], who first observed it in 1896.

In a strong external magnetic field, with Bext > Bc, the coupling of ~J and ~I is
broken, and both precess around the magnetic field direction Bz, see Figure 2.3b.
This is called the Paschen-Back effect, named after Friedrich Paschen and Ernst
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Back [30], who discovered it in 1921. The magnetic moments of ~J and ~I now contribute
individually. The resulting energy correction can be written as

∆EHFS,strong(Bz) = gJ ·µB ·mJ ·Bz+∆EHFS,0(n`j)·mJ ·mI−gI ·µn ·mI ·Bz , (2.27)

where the first term is the contribution of the electrons in the atomic shell, the
second term is the hyperfine interaction between ~J and ~I, and the third term is the
contribution of the nucleus, which is about three orders of magnitude smaller than
that of the electrons.

2.1.8 Stark Effect and the Metastable 2S1/2 State

Like magnetic fields, external electric fields ~E also influence the atomic binding energy,
very similar to the Zeeman effect. However, it does not remove the degeneracy of an
atomic level, i.e., that states with the same value of the magnetic quantum number
of the total angular momentum are still degenerate. The effect was discovered in
1913 by Johannes Stark [31]. One distinguishes between the linear and the quadratic
Stark effect, where the modification of the atomic binding energy due to the external
electric field is proportional to | ~E| or | ~E2|. The linear stark effect is observed in
hydrogenlike atoms in states with principal quantum number n > 1. For all other
atoms, the quadratic Stark effect applies.

10 2 10 1 100 101 102
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cm ]
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10 5

10 4

10 3

10 2

10 1

100

2S
1/

2 [
s]

Figure 2.4: Lifetime of the 2S1/2-state as function of an external
electric field.
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Furthermore, the linear Stark effect has an influence on the lifetime τ of the
2S1/2 state. Without electric fields, due to the conservation of angular momentum,
the 2S1/2 state can only transition into the ground state via a multi-photon transition,
therefore becoming a metastable state with a relative long lifetime of τ2S1/2 ≈ 0.14 s.
Inside electric fields, however, the Stark effect now creates a mixing between the
2S1/2 state with the short-lived 2P1/2 state (10−7s < τ2P1/2). As a result, the lifetime
of the 2S1/2 state decreases with the increase of an external electric field. The τ2S1/2

as function of an external electric field is plotted in Figure 2.4.

2.1.9 Polarization

As discussed in subsection 2.1.2, the angular momentum l of a particle has 2l + 1
possible orientations. In an external magnetic field ~B = Bzez, the expectation value
of L̂z is

〈L̂z〉 = 〈l,ml|L̂z|l,ml〉 = ~ml . (2.28)

For an ensemble of particles of angular momentum l, the particles can occupy different
values of ml. This can be described by the density operator ρ̂. It is given by

ρ̂ =
n∑
i=1

Pi|ψi〉〈ψi| , (2.29)

with Pi being the probability of a particle to be in the ith state (|ψi〉) in the ensemble
with n different states. Obviously, the sum over all probabilities equals 1. The
expectation value of L̂z is the polarization vector ~P = pi, with

pi = 1
~l
〈L̂i〉 = 1

~l
tr(ρ̂L̂z) = tr

(2l+1∑
i=1

Pi|l,ml〉〈l,ml|L̂z

)
(2.30)

As consequence of Equation 2.4, the components pi cannot be measured simultaneously,
and, because we choose z as quantization axis, only pz is of further interest. It is
commonly called the vector polarization.

For a l = 1/2 particle, one gets

|1/2,+1/2〉 = |↑〉 =
(

1
0

)
|1/2,−1/2〉 = |↓〉 =

(
0
1

)
, (2.31)

the z- component of the angular momentum operator is

L̂z = ~
2σz , (2.32)

with σz being the third Pauli matrix. The density operator becomes

ρ̂ =
n∑
i=1

Pi|ψi〉〈ψi| =
(
P↑ 0
0 P↓

)
, (2.33)
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where P↑ and P↓ are the probabilities of a particle to be in the state | ↑〉 or | ↓〉,
respectively. The vector polarization results to

pz = 2
~
tr
(
ρ̂L̂z

)
= tr

(
ρ̂L̂z

)
= P↑ − P↓ . (2.34)

An alternate way to describe pz using the occupation numbers N↑ and N↓ is

pz = N↑ −N↓
N↑ +N↓

. (2.35)

The vector polarization is fully sufficient to describe the polarization of an ensemble
of l = 1/2 particles. For l = 1 particles like deuterium, to describe the complete
polarization, additionally the tensor polarization pzz needs to be calculated.

2.2 Breit Rabi Formula

The formulas given in the subsection 2.1.7 only allow the modification of the energy
correction caused by external magnetic fields that are either strong or weak compared
to the critical magnetic field of the atoms, and do not give a sufficiently accurate
solution for mean magnetic fields with Bext ≈ Bc.

An alternative to describe the energy correction of the binding for all magnetic
fields is the Breit-Rabi forumla, published in 1931 by Isidor Isaac Rabi and Gregory
Breit [9]. The formula gives an over all solution for the binding energy in atoms
with F = I ± 1/2, which also holds for fields around Bext ≈ Bc. In the following
subsections, the original Breit-Rabi formula for the hydrogen atom is presented, as
well as a modified version with various corrections from quantum electrodynamics
that were not known to Breit and Rabi at the time of the original publication.

2.2.1 The Breit-Rabi Formula for Hydrogen

By solving the eigenvalue problem of the hyperfine Hamilton operator in a magnetic
field ~B = Bz~ez for the 1S1/2 state of hydrogen, one gets the solutions for the modifi-
cation of the binding energy for the four hyperfine substates. The Hamilton operator
ĤHFS is given by

ĤHFS = ∆EHFS,07 Î · Ĵ
~2 +

(
gjµB

Ĵz
~
− gIµB

Îz
~

)
B , (2.36)

7Here and in the following ∆EHF S,0 is an abbreviated form for ∆EHF S,0(1S1/2) the hyperfine
constant for the (1S1/2) state, which has been shortened for better readability.
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the value for ∆EHFS,0(1S1/2)is 5.87× 10−6 eV, and the four solutions for the substates
are

δEα1(Bz) = ∆EHFS,0
4 − gsµBBz

2 − gIµnBz
2 (2.37a)

δEα2(Bz) = −∆EHFS,0
4 + 1

2

√
∆EHFS,02 + (gsµB − gIµn)2Bz

2 (2.37b)

δEβ3(Bz) = ∆EHFS,0
4 + gsµBBz

2 + gIµnBz
2 (2.37c)

δEβ4(Bz) = −∆EHFS,0
4 − 1

2

√
∆EHFS,02 + (gsµB − gIµn)2Bz

2 . (2.37d)

This is in agreement with the conventional Breit-Rabi formula[9] that can be
written as

δEHFS,mag(x) = ∆EHFS,0
[
−a1mFx±

1
2

√
1 + 2mF

I + 1
2
c1x+ c2x2

]
− ∆EHFS,0

2(2I + 1) ,

(2.38)
where

x(Bz) = µBBz
∆EHFS,0

= Bz
Bc

8 . (2.39)

The energies δE are counted from the hyperfine centroid. In Figure 2.5 the Breit-Rabi
diagram for the 1S1/2 state of hydrogen is shown.

Compared to the original notation of Breit and Rabi [9], the coefficients in Equa-
tion 2.38 are modified to allow a better comparison with Equation 2.37 and to allow a
better understanding of the corrections that are presented in the following subsection.
The coefficients are

a1 = −gIµn (2.40a)

c1 = gsµB + gIµn (2.40b)

c2 = (gsµB + gIµn)2 . (2.40c)

2.2.2 The Breit-Rabi Formula for Hydrogen including QED Correc-
tions

Since the days of Breit and Rabi, the understanding of the hydrogen spectrum has
drastically improved. D. L. Moskovkin and V. M. Shabaev [32] have calculated an
improved and more accurate version of the Breit-Rabi formula that incorporates
various corrections from quantum electrodynamics. Based on [32] the Breit Rabi
formula for the 1S1/2 state can be written as

8Bc is again the critical magnetic field for hydrogen atoms, see subsection 2.1.5. For the 2S1/2
state of hydrogen Bc = 50.7 mT [4].
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Figure 2.5: Breit-Rabi diagram of the 1S1/2 state of hydrogen. The
magnetic field B is given in multiples of Bc, the energy in multiples of

EHFS,0. The basis of the calculation is Equation 2.37.

δEHFS,mag(x) = ∆EHFS,0
[
−α1(1 + ε1)mFx+ ε2

∆EHFS,0
mec2 x2

±1
2

√
1 + 2mF

I + 1
2
c1(1 + δ1)x+ c2(1 + δ2 +mF

2δ3)x2

]
− ∆EHFS,0

2(2I + 1) .
(2.41)

The "-" and "+" correspond to the lower and higher values of F with same mF ,
respectively. Following [32], the corrections of the binding energies of the four substates
are

δEα1,QED(x) = ∆EHFS,0
[1

2 + d1(1 + η1)x+ η2
∆EHFS,0
mec2 x2

]
(2.42a)

δEα2,QED(x) = ∆EHFS,0
[
ε2

∆EHFS,0
mec2 x2 + 1

2

√
1 + c2(1 + δ2 +mF

2)x2
]

(2.42b)

δEβ3,QED(x) = ∆EHFS,0
[1

2 − d1(1 + η1)x+ η2
∆EHFS,0
mec2 x2

]
(2.42c)

δEβ4,QED(x) = ∆EHFS,0
[
ε2

∆EHFS,0
mec2 x2 + 1

2

√
1 + c2(1 + δ2 +mF

2)x2
]
. (2.42d)

The coefficients ε1, ε2, δ1, δ2, δ3, η1, η2, and d1 were numerical calculated and can
be found in Appendix A.
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Figure 2.6: Breit-Rabi diagram of the 1S1/2-state of hydrogen, in-
cluding QED-correction. The magnetic field B is given in multiples of

Bc, the energy in multiples of EHFS,0.

In Figure 2.6 the Breit-Rabi diagram for the 1S1/2 state of hydrogen including
the QED corrections is shown. The difference between Figure 2.5 and Figure 2.6 are
just in the order of 0.002 % ∆EHFS,0(1S1/2). To get a better idea of the order, in
Figure 2.7, the difference (δEHFS − δEHFS,QED) is plotted for the first few Bc. One
can see that the differences between the formula with QED corrections and without
are very small. In the measurements presented in this thesis, only magnetic fields
in the range below 1 Bc are achieved. Here, the difference is in the order of below
0.01 neV. So in order to verify the QED corrections, the measurement uncertainties
need to fall below this value.
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2.3 Lamb-Shift Polarimeter

The Lamb-shift polarimeters is a device designed to measure the nuclear spin polariza-
tion of hydrogen and/or deuterium atoms, ions and molecules or its isotopes by using
the properties of the metastable 2S1/2 state. In general, a Lamb-shift polarimeter con-
sists of five main components, which are an ionizer/ion source, a Wienfilter, a cesium
cell, a spin filter and a quenching chamber. In case of an ionizer, it is used to ionize an
incoming beam of neutral particles. In case of an ion source, it directly creates a beam
of ionized particles. The ions are accelerated towards the Wienfilter, which separates
them according to their masses, so that only a single mass is transmitted. From there,
the beam travels into the cesium cell, where the ions are transformed into metastable
neutral atoms via a charge transfer reaction. After that they enter the spin filter, in
where, the metastable atoms are quenched to the ground state except for one of the α
states. The remaining meta stable atoms are quenched to the ground state inside the
quenching chamber. There, the Lyman-α photons emitted in the quenching process
are detected by a photomultiplier tube. At the end of the quenching chamber, also
a Faraday cup is mounted allowing to directly measure the current of the ion beam.
Longitudinal magnetic fields in the ionizer, the Cesium cell and the spin filter, as well
as a perpendicular magnetic field in the Wienfilter ensure a well-defined quantization
axis along the polarimeter. A schematic drawing of the Lamb-shift polarimeter can
be seen in Figure 2.8.

Figure 2.8: Schematic of the Lamb-shift polarimeter. Blue vectors
indicate beams of neutral particles in the ground state. The red vector
indicates the ion beam formed in the ionizer, consisting of ions of
different masses. Ions of undesired masses (marked in yellow) are
deflected in the Wienfilter. Metastable atoms are denoted in green. In
the spin filter they are brought to the ground state and only one α-state
is allowed to pass. In the quenching chamber, all remaining metastable
atoms are quenched to the ground state, whereas Lyman-α photons
(marked in violet) are emitted, which are detected by a photomultiplier

tube [18].

2.3.1 Ionizer

Different types of ionizers are suitable to be used in a Lamb shift polarimeter. One
possibility to create an ionized particle beam is electron impact ionization, using an
electron gun, which for example can be used to create an ionized and polarized beam
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out of a storage cell [5], or a Glavish-type ionizer which can be used to create a
polarized HD-beam [6].

Another possibility is an electron-cyclotron-resonance (ECR) ion source, which is
used in the experiments later described in this thesis. An electron cyclotron resonance
occurs when an electron, located inside a static magnetic field Bstat, is irradiated
with an electromagnetic frequency fHF corresponding to the natural frequency of the
electron’s rotation within the magnetic field. Due to the Lorentz force in the magnetic
field, a free electron will start to move on a closed trajectory. The angular frequency
ωcr of the motion is

ωcr = 2πfHF = eBstat
meγ

with γ = 1√
1− (vc )

. (2.43)

Inside an ECR-source Bstat is designed in a way that allows electrons to find a
stable orbit. Commonly used conditions for ECR sources are Bstat = 87.5 mT and
fHF = 2.45 GHz. The electrons trapped in the ECR collide with molecular gas
injected into the source to produce ions. The ions are then extracted using static
electric potentials.

2.3.2 Wienfilter

The Wienfilter is named after its developer Wilhelm Wien, who invented it in 1898 [33].
The electric ~FE and the Lorentz force ~FL are acting on a particle, carrying the charge q,
and traveling though an electrical ~E and magnetic field ~B with the velocity ~v = vz~ez.
The total force acting on this particle is

~F = ~FE + ~FL = q · ~E + q · ~v · ~B . (2.44)

By arranging the flight direction of the particle perpendicular to both fields (z ⊥ ~B ⊥
~E ⊥ z) a particle will not experience a force if

|v| = E

B
, (2.45)

with E = | ~E| and B = | ~B|. Therefore, particles with the same velocity can path the
Wienfilter undisturbed, while all others will be deflected and can be stopped by a
collimator.

For mono-energetic beams, where all particles have the same kinetic energy Ekin,
the aperture becomes a mass filter, since

m = 2Ekin
v2 = 2Ekin

B2

E2 . (2.46)

In polarization experiments one also needs to consider that the magnetic moments
of the particles will start to precess around the perpendicular magnetic field of the
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Wienfilter with the Lamor frequency

ωL = −γB , (2.47)

where γ is the gyromagnetic ratio of the particle. The total angle α of the rotation
is defined by the time of flight ∆t through the Wienfilter and the Larmor frequency,
with

α = ∆t · ωL = −γ
√

m

2Ekin
·B · l , (2.48)

where l is the effective length of the magnetic field. For a proton beam it needs to be
taken into account that in the absence of an electron, the nuclear magnetic moment
will rotate and so change the polarization, because the LSP can measure the projection
on the beam line only. Therefore, B and l need to be chosen carefully to compensate
this. For molecular ions, this effect can be neglected, because the magnetic moment
of the unpaired electron inside a molecule will realign with the magnetic field of the
Wienfilter adiabatically and the nuclear magnetic moment is strongly coupled to that
of the electron.

2.3.3 Cesium Cell

Inside the cesium cell, metastable atoms (H2S1/2 or D2S1/2) are produced using a
charge-exchange reaction. The incoming beam reacts with cesium inside the cell. The
cesium is heated so that it appears as saturated vapor with a temperature of around
100 °C. In case of an atomic beam, the H+ or D+ ions capture an electron from a
cesium atom, which can be described as a "nearly resonant process" [34]. The equation
of the reaction is

H+ + Cs→ H∗ + Cs+ . (2.49)

Not all reactions result in the 2S1/2-state, the ground state as well as other excited
radiative states are possible too. Figure 2.9 shows the cross-section of the charge
transfer reaction. One can see that it reaches its maximum at 550 eV per nucleon. For
the production of 2S1/2 hydrogen, this corresponds to an efficiency of around 30 %.

Measurements have shown, that the production of metastable atoms from a molec-
ular ion beam is also possible [5, 6]. However, it is not yet resolved how exactly the
metastable atoms are created. It is either a two steps process, which could look like
this

H+
2 + Cs→ 2H+ + Cs+ + 2e−and then (2.50)

H+ + Cs→ H2S1/2 + Cs+ , (2.51)

or they are produced directly, in a reaction like this

H+
2 + Cs→ H1S1/2 +H2S1/2 + Cs+ . (2.52)
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Figure 2.9: Cross-section of charge transfer reactions (•) Cs+D+ →
D2S1/2 + Cs+, and (◦) Cs + H+ → H2S1/2 + Cs+ as function of the

energy per nucleon [34].

Recent investigations by Lukas Huxold [18] have shown that the temperature of the
Caesium vapor also has an effect on the efficiency of the 2S1/2 formation process. It
seems that a hotter Caesium vapor is beneficial, which would be a hint that the 2-step
process is more likely.

2.3.4 Spin Filter

The spin filter is the part of the LSP that filters for the different hyperfine substates.
It was developed by McKibben, Lawrence, and Ohlsen [35] as part of a Lamb-shift ion
source in 1968. It uses a combination of electric and magnetic fields and an injected
radiofrequency to quench all metastable particles traveling through it to the 2S1/2

state. By choosing the right amplitude of the fields and radiofrequency, all but one
hyperfine substate are quenched to the ground state while passing through the spin
filter.

As discussed in subsection 2.1.6 the 2S1/2 state and the 2P1/2 state are separated
by 4.375 µeV [36], the Lamb-shift. Similar to the 1S1/2 state, the hyperfine substates
of 2S1/2 are named α and β (see subsection 2.1.5). The hyperfine substates of the
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Figure 2.10: Breit-Rabi diagram of the 2S1/2 and 2P1/2 state. At
B = 53.5 mT the β4- and the e1-state are degenerate and the α1 and the
e1 state couple strongly using a radiofrequency with f0 = 1.609 75 GHz.
At 60.5 mT the same applies for the β3 and e2 states and the α2- and

e2 state couple.

2P1/2 state are referred to as e and f . Shown in Figure 2.10 one can see, that for
hydrogen, the β3 and e2 states are degenerate for an external magnetic field of 60.5 mT.
For the β4 and e1 states, the same applies at B = 53.5 mT. In combination with
an external electric field of about 10 V cm−1 (Stark effect, see subsection 2.1.8), the
lifetime of the β states goes below 10−7 s and all particles in this state are quenched
to the ground state. At the two above given crossing points via a radiofrequency of
f0 = 1.609 75 GHz, the αi states couple to the ei states. Three possible coupling cases
can be distinguished, a "weak" coupling, where not all particles in the α-states move
to the e state, a "medium" coupling, where all particles in the α-state are transferred
to the e-state from where they decay into the ground state, and a "strong" coupling,
where the radiofrequency re-excites the transferred particles back into the α-state.
By using a cavity with a quality factor between 1000 and 3000, it can be insured
that at the crossing points one αi ei transition couples strongly while the other only
couples with a medium strength [4]. So only one, the strongly coupled α-state, is not
quenched to the ground state. An illustration of the complete working principle of
the spin filter is shown in Figure 2.11.
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(a)

(b)

Figure 2.11: Working principle of the spin filter [18]. A: At B =
53.5 mT the α1 state can be transmitted. B: At B = 60.5 mT the α2
state can be transmitted. The green arrow indicates the transition
via the Stark effect, the red arrows the transition induced by the
radiofrequency. The big red arrow stands for strong coupling strength,

the small for medium.
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Figure 2.12: Exemplary Lyman-α spectrum of polarized hydrogen
measured with a LSP.

2.3.5 Quenching Chamber

After the spin filter, the surviving metastable states enter the quenching chamber.
Again, using the Stark effect by applying a very strong electric field, the atoms are
quenched to the ground state inside a small volume. During the quenching, Lyman-α
photons are emitted, with an energy of Eph = 10.2 eV. Using a photomultiplier tube
designed with a very narrow wavelength interval around the Lyman-α wavelength, the
photons are converted to an electric signal, which can be read out with an oscilloscope.
The strength of the photomultiplier signal is hereby proportional to the amount of
quenched particles.

Depending on the geometry of the quench chamber, only a small amount of a
few percent of the emitted photons reach the photomultiplier tube, since the photons
are distributed in all directions equally. In combination with a quantum efficiency
of about 10 %, this results in a detection efficiency of 10−3. A way to increase the
number of photons that reach the photomultiplier tube is to install an ellipsoidal
aluminum mirror with one focus point located inside the quenching volume and the
other at the entrance window of the photomultiplier.

In practice, to measure the polarization of a particle beam, the photomultiplier
signal is measured while the magnetic field of the spin filter is ramped. Figure 2.12
shows a typical measured spectrum for a hydrogen beam. While the magnetic field
is above or below the magnetic field needed to create the strong coupling, no meta
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Figure 2.13: Scheme of the working principle of the LSP, according
to [4]. The nuclear spin is indicated by the smaller and the electron

spin by the larger arrows.

stable particle can transmit, and no signal is created. But if the magnetic field
inside the spin filter reaches one of these coupling points, the respective α-state is
transmitted and the photomultiplier detects a Lorentz-like curve. Thereby, the peaks
of the measured spectrum correspond to the occupation number of the respective spin
state. Figure 2.13 shows a schematic of the operating principle of the Lamb-Shift
polarimeter using hydrogen as an example.

2.4 Sona Transition

In 1967, P.G. Sona [37] proposed a method to increase the polarization of H− and
D− beams by exchanging the occupation numbers of the metastable 2S1/2 state. The
idea of the Sona transition is to exchange the occupation number between the α1

and the β3 state. To achieve this, a beam of polarized metastable particles is guided
through a longitudinal magnetic field that reverses its field direction along the beam
line. This can be realized by two solenoids, which are coaxial with the beam, but
have opposing magnetic directions. Such a device creates a well-defined zero crossing
of the longitudinal magnetic field. A schematic drawing of a Sona setup is shown in
Figure 2.14. By reversing the direction of the magnetic field, the α1 state, with both
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Figure 2.14: Sketch of a Sona transition unit [18]. The two opposing
coils (black) are arranged along the beam axis z and should be shielded
(green) from outside fields. The distance between the coils is λ/2. A

typical longitudinal magnetic field curve is drawn (blue).

electron and nuclear spin parallel to the magnetic field, becomes the β3 state with
both spins antiparallel, and vice versa. This is nothing different from extending the
Breit-Rabi diagram to negative magnetic fields, as can be seen in Figure 2.15.

However, for this to work, the Larmor frequency of the total angular momentum
of the atom F in the radial magnetic field has to be lower than the frequency of the
reversal of the longitudinal magnetic field. According to Sona [37], this is ensured if

∂Bz
∂z

<<
8vHme

er2 , (2.53)

with vH =
√

2Ekin/m being the velocity of the metastable particles, m the mass of
these particles, r the radius of the beam and e the elementary charge. Otherwise,
the spins would be able to reverse their direction along with the magnetic field
adiabatically and, thus, staying in their initial state.

According to Maxwell’s laws and the symmetries of the solenoids for the radial
magnetic field component of the Sona transition follows

Br(z, ρ) = −ρ2 ·
∂Bz
∂z

, (2.54)

where ρ is the distance from the z-axis. Because the beam particles travel through the
Sona transition unit with vz = vH , they experience a changing magnetic field, which
in their inertial system is a time dependent magnetic field. With a Fourier analysis
of the radial magnetic field, the frequency of the electromagnetic field seen by the
particles can be obtained [8]. These frequencies are determined by the geometry of
the Sona coils and the velocity of the particles vH . The basic harmonic frequency of
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Figure 2.15: Breit-Rabi diagram of the 2S1/2 state of hydrogen
extended to negative magnetic fields. By crossing B = 0 the state α1

becomes β3 and vice versa. The states α2 and β4 do not change.

the Sona transition is in the order of

fSona = vH
λ

, (2.55)

where the wavelength λ is approximately twice the distance between the centers of
the two Sona coils. This corresponds to a photon in the particle picture with the
same energy.

The oscillating radial magnetic field can induce σ transitions within the metastable
particles, allowing them to change into another hyperfine substate with ∆mf = ±1 if
the energy difference between initial and final state is a multiple of ∆ESona = hfSona

or an integer multiple of it. Because photons are Bosons and therefore have a spin
s = 1, only odd multiples are allowed, otherwise the angular momentum conservation
would be violated. Therefore, inside a Sona transition unit at different magnetic fields
multi photon transitions between different hyperfine substates of the meta stable
particles can occur. E.g., metastable particles in the β3 state change to the α2 state
and from there to α1 or back to β3. Figure 2.16 shows an example of the transitions
drawn into a Breit-Rabi diagram.

For a beam of metastable hydrogen that enters the Sona transition unit in the α1

state, the atoms will be transferred to the β3 state after the zero crossing, but from
there they can change to the α2 state and from there even back to the α1 state. Thus,
the occupation numbers between the different states start to oscillate as a function
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of the magnetic field. Figure 2.17 shows a simulation of such oscillations, which was
numerically calculated [8]. For the simulation, a magnetic field in the shape of a
perfect sin-function was assumed, with a wavelength of λ = 32 cm. The kinetic energy
of the metastable hydrogen atoms was assumed to be Ekin = 1.28 keV.

Based on this, the assumption is made, that the α1 state peaks every time the
magnetic field reaches the point where a multiphoton transition between the α1 and
α2 state occurs. Comparing the Breit-Rabi diagram shown in Figure 2.16 and the
simulated occupation numbers shown in Figure 2.17, this assumption seems reasonable.
The spacing between the center of the peaks in the α1 spectrum increases constantly,
since the α1 and α2 lines in the Breit-Rabi diagram become parallel for increasing
magnetic fields. For the α2 spectrum the opposite is the case, here the distance
between the center of the peaks becomes constant with increasing magnetic field,
because the α2 and β3 lines in the Breit-Rabi diagram diverge linearly.

In order to find particles in the α1 state, they need to make the transition from
β3 to α2 first. Thus, a transition into the α1 state is only possible, if the transitions
β3 into α2 and α2 into α1 sufficiently overlap due to the line width. However, as a
result, the peaks are getting deformed, for example at a magnetic field, where both
transitions α1 − α2 and α2 − β3 occur, the amount of α2 should be reduced, because
most of them would end up in the α1 state. Or, for magnetic fields where the α2− β3

transition has a minimum and the α1 − α2 transition has a maximum, the amount of
α1 should be reduced because there are fewer atoms in the α2 state that can transition
to α1.
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Figure 2.16: Example of multi photon transitions in 2S1/2 hydrogen
induced inside a Sona transition unit. The frequency of the Sona
transition was chosen to fSona = 1.5 MHz, which corresponds to an
∆E ≈ 6.93 neV. The counting labels indicate the number of photons

needed for the transition.
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Figure 2.17: Simulation of the occupation numbers of three hyper-
fine substates of 2S1/2 hydrogen in a Sona transition unit. For the
simulation, a magnetic field in the shape of a perfect sin-function was
assumed, as well as a kinetic energy for the metastable particles of

Ekin = 1.28 keV and a distance of the coils centers of 16 cm.
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Chapter 3

Experimental Setup

As mentioned in chapter 1 the measurements presented in this thesis were performed at
the Institut für Kernphysik at the Forschungszentrum Jülich. The main components
of the exeriment are a customized version of the monogan® M-100 ECR ion source
sold by the company Pantechnik1, a Wienfilter, a cesium cell, two spin filters, a
Sona transition unit and a quench chamber with a photomultiplier tube on top of it.
Between the ECR-source and the Wienfilter, as well as under the quench chamber,
turbo molecular pumps are mounted which provide the vacuum inside the components.
A schematic drawing of the setup is shown in Figure 3.1 and a series of photos of the
apertures inside the laboratory can be found in Appendix B. For a good alignment of
the different components, everything was mounted on a bench. The vacuum conditions
are measured at two locations using pressure gauges. The first is behind the ECR
source above the first pump. There, the vacuum fluctuates between 8× 10−7 mbar
and 1× 10−6 mbar. The second pressure gauge is located on the side of the quench
chamber, there the vacuum conditions are slightly worse with a pressure of around
3× 10−6 mbar.

1https://www.pantechnik.com/

Figure 3.1: Schematic drawing of the experimental setup. Stating
from left to right, there is the H2-bottle, the ECR ion source, the
Wienfilter, the cesium cell, the first spinfilter, the sona transition, the
second spin filter, and the quench chamber with a photomultiplier tube

mounted on top of it.

https://www.pantechnik.com/
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3.1 Electron Cyclotron Resonance Ion Source

The electron cyclotron resonance ion source is used to generate a beam of ionized
hydrogen atoms. Originally, it was fuelled by a hydrogen generator, which is now
replaced by a bottle of molecular hydrogen, because the hydrogen generator proved
to be insufficient for the purpose of this experiment. The incoming hydrogen flux is
controlled by a mass flow controller, limiting the maximum possible hydrogen flux
to 2 mbar L s−1. A 2.45 MHz radiofrequency with a power of up to 100 W is used
to induce the electron cyclotron resonance inside the source. The electrons excited
by the ECR break the covalent bond of the molecular hydrogen, creating atomic
hydrogen ions. To accelerate the ions, a positive potential of up to 10 keV is used
in combination with a negative potential of up to −20 keV used for focusing. After
leaving the ECR source, the ion beam pass through another electrostatic focussing
lens, located between ECR source and Wienfilter.

3.2 Wienfilter

The Wienfilter is located after the electrostatic lens and before the cesium cell. As
discussed in subsection 2.3.2, it operates as a mass and velocity filter to ensure that
the proton beam is mono energetic. The required magnetic fields perpendicular to the
beam axis are generated by a magnet consisting of two copper coils, each surrounded
by a C-shaped iron rod. The coils are cooled with water. Between the coils is a
vacuum chamber through which the beam passes. On the top and the bottom of the
inside of this chamber, two isolated plates are mounted parallel to each other. Each
of the plates is connected to a high voltage supply, one to a positive, the other to a
negative one. These are used to create the electric field perpendicular to the beam axis
and the magnetic field direction. Because each plate can be controlled individually,
they can also be used to slightly manipulate the beam axis. Around the whole
apparatus a steel box is mounted, functioning as a magnetic yoke. Since the beam is
not polarized at this point, Larmor precession does not affect the measurement, so
the field combinations can be freely chosen.

3.3 Cesium Cell

The cesium cell consists of a stainless steel vacuum chamber with openings on both
sides for the beam to pass through. Two holes are drilled in the bottom and top
of the cell respectively, in each case one is equipped with a heating rod and the
other with a Pt-100 thermal sensor. So, in combination with a PID controller, the
temperatures of the top and bottom of the cell can be controlled up to an uncertainty
of ∆T = 0.1 °C. The top temperature is set to a value of 60 °C and the bottom to
160 °C. At these temperatures, the vapor pressure of cesium is about 1 mbar at the
bottom and about 0.01 mbar at the top, producing a cesium vapor that interacts
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with the beam. On the top side of the cell, a mechanism to hold and crack a glass
ampule filled with cesium is mounted, which is used to fill the cesium into the cell
at the beginning of a measurement run. In this way, the beam can interact with the
cesium and metastable hydrogen atoms are produced. Since the particle beam is not
polarized yet, no magnetic holding field and therefore no coils around the cesium cell
are needed. Figure 3.2 shows a schematic drawing of the cesium cell. Note, that
once the cesium ampule is broken, over time the cesium diffuses to the other parts of
the aperture and deposits there on surfaces which can create electric shortcuts. To
minimize this effect, before and after the cesium cell valves are mounted, which are
kept closed when no experiments are performed.

Figure 3.2: Schematic drawing of a cesium cell [18]. On the top side,
inside the cracking mechanism, the cesium ampule is located. On the
top and bottom, one can see the boreholes for the heating rods and

temperature probes.

3.4 Spin Filters

As discussed in subsection 2.3.4 a spin filter allows a selective transmission of metastable
atoms in one hyperfine substate only, using a combination of static magnetic and
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electric fields and an injected radiofrequency. The magnetic fields are created by
a solenoid, located around the beam axis. The static electric fields as well as the
radiofrequency are provided by a cylindrical cavity placed in the center of the solenoid.
Figure 3.3 shows a schematic drawing of the spin filter.

Two identical designed spin filters are used in this experiment. The first is set
up before the Sona transition unit, generating the polarization of the particle beam.
After the cesium cell, the beam consists of hydrogen atoms in all four metastable 2S1/2

states. The magnetic field of the first spin filter is set to 53.5 mT, which allows only
atoms in the α1 state to be transmitted. Atoms in the α2 state and both β states are
quenched to the ground state, so that after the spin filter, all remaining metastable
particles in the beam are in the α1 state. Thus, the beam is now polarized. The
second spin filter is located behind the Sona transition unit and used in the classical
way as part of the LSP. However, during the measurement the magnetic field is not
ramped but fixed to either 53.5 mT or 60.5 mT, depending on whether the α1 or α2

oscillation spectrum is measured. Since the Sona transition unit inverts the magnetic
field direction, the magnetic fields of both spin filters point in opposite directions.

Figure 3.3: Schematic drawing of a spin filter [18]. The homogeneous
magnetic field is primarily generated by the three main coils (green).
The two end coils (dark green) reduce the gradients at both ends. The
main coils are cooled by a copper heat sink (orange), which in turn
is cooled by water (blue). The outer part have a high permeability
to purpose as magnetic yock. The cavity (dark orange) and the inner
parts have a low permeability to minimize their effect on the magnetic

field.



3.4. Spin Filters 35

0 10 20 30 40 50
Position  [cm]

0

20000

40000

60000

80000

M
ag

ne
tic

 fi
el

d 
[

T]

12.8 A
12 A
11 A
10 A
9 A
8 A
7 A
6 A
5 A
4 A
3 A
2 A
1 A
0 A

Figure 3.4: Longitudinal magnetic field along the spin filter beam
axis at different currents.

3.4.1 Solenoid

For the spin filter to function properly, magnetic fields with a high homogeneity are
needed. They are provided by a solenoid consisting of five coils which are connected
in series. The three central coils create a magnetic field plateau in the area of the
cavity. The coils are tuned to allow a high homogeneity of ∆B

B < 10−3 for fields
between 50 mT and 65 mT. Additionally, at both ends of the spin filter, two end coils
are located. They decrease the magnetic gradient to avoid that the metastable atoms
quench due to fast changing fields while entering or leaving the spin filter. Figure 3.4
shows the longitudinal magnetic field of the spin filter along the beam axis for different
currents. The three central coils are cooled by a copper heat sink run through by
water.

3.4.2 Cavity

The cylindrical shaped cavity provides the static electric and the radiofrequency field.
It is located in the center of the spin filter and is divided in three sections along
the beam axis, the central section, in which the radiofrequency is stored, and two
identical closure heads, confining it to the central part. Each section is divided
into four quadrants. Each outer quadrant is connected to the corresponding inner
quadrant, but each section is still electrically isolated. On two opposing quadrants
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Figure 3.5: Photo of a dismantled spin filter cavity [18]. The four
gold colored quadrants in the center are the main part of the cavity
into which the high frequency is coupled. The silver colored outer
quadrants can be seen at the top, as well as a silver colored ring that is
part of the holding structure. An identical set is hidden on the bottom.

of the central section each, an antenna is mounted, one is connected to a frequency
generator, used for supplying the radiofrequency, and the other serves as pickup to
measure and tune the cavity. The other two quadrants are connected to high voltage
power supplies, providing the static electrical field used for the quenching. The inner
diameter of the main cylindrical part is d = 142 mm. Due to the skin effect, the
enclosed cylinder perfectly matches the required frequency of 1.6975 GHz to excite
the transitions between the α and e states. The quality factor of both spin filters
was measured. Both comply with the Q = f0

∆f0
∈ [1000 ; 3000] limitation, that is

needed to ensure that when one α state couples strongly, the other still couples with
a medium strength. A photo of a dismantled cavity is shown in Figure 3.5
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3.5 Sona Transition Unit

The Sona transition unit is located between the two spin filters and consists of two
coils identical in design. They produce opposing longitudinal magnetic fields, each
in the field direction of the adjacent spin filter field, so that in total the magnetic
field reverses along the beam axis. An exemplary configuration of the longitudinal
magnetic fields can be seen in Figure 3.6. The coils are shielded with four layers of µ-
metal against the stray fields of the spin filters and other magnetic fields. Everything
is mounted on a vacuum pipe in which the beam passes through. Using a threaded
nylon rod and nylon nuts, the coils are mounted with a fixed distance between their
centers, for the purpose of the following experiment the distance was chosen to be
16± 0.5 cm. During the measurements, the current is ramped using a ramp generator
with a saw tooth function.

The magnetic field profile of the Sona transition unit and the two adjacent spin
filters was measured using an axial Hall-probe, which was guided through the structure
with a ρ ≈ 10 mm offset parallel to the beam axis. Figure 3.7 shows the longitudinal
magnetic field Bz inside the Sona transition unit for different coil currents. One
can see the well-defined zero crossing approximately in the middle of the transition
unit. Figure 3.8 shows the radial magnetic field Br for these currents, which were
calculated using the derivative of the z-component of the magnetic field and the
relation presented in Equation 2.54. Looking at radial magnetic field distribution, one
can see that the expected λ should be about the order of 27 cm, perhaps even lower
due to the double-peaked structure in the center.

0 20 40 60 80 100 120
Position [cm]

60000

40000

20000

0

20000

40000

60000

Lo
ng

itu
di

na
l m

ag
ne

tic
 fi

el
d 

[
T]

Figure 3.6: Longitudinal magnetic field configuration of the Sona
transition unit and both spin filters. On the right is the field of the
second spin filter, in the middle that of the Sona transition unit, and
on the left that of the first spin filter. The current inside the Sona coils

was 2 A and inside the spin filter coils 9 A.
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Figure 3.7: Longitudinal magnetic field Bz of the Sona transition
unit measured for different currents.
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Figure 3.8: Calculated radial magnetic field of the Sona transition
unit for different currents. The relation from Equation 2.54 is used

and a distance to the beam axis of ρ ≈ 10 mm was assumed.
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3.6 Quench Chamber

As quench chamber, a cylindrical vacuum chamber is used. On the top side of the
chamber, a photomultiplier tube is mounted, detecting the Lyman-α photons that are
generated during the quenching of the remaining metastable particles inside the beam.
The beam particles enter the chamber through a stainless steel tube. At the end of
the chamber a second steel tube is positioned and between those a Teflon tube. Inside
the Teflon tube an isolated electric ring electrode is mounted which is connected to a
high voltage supply. The two steel tubes are grounded, so that a strong electric field
of around E ≈ 200 V cm−1 can be produced, inducing the quenching in the area of the
Teflon tube. In the direction of the photomultiplier tube, the Teflon tube has a hole
for the photons to escape. The signal of the photomultiplier tube is read out with
an oscilloscope and recorded in combination with the signal of the ramp generator,
ramping the magnetic field of the Sona transition unit.

3.7 Problems during the Measurements

During and after the measurements conducted presented in this thesis, a few problems
with the experimental setup were discovered which had unforeseen influences on the
measurements and need to be considered in the analysis and interpretation of the
measurements. The problems are of different significance and can be clearly associated
with individual parts of the setup.

3.7.1 ECR Plasma

Already during the measurements the ECR source was not working properly, only for
short periods of time and only an instable plasma could be ignited. After a maximum
of two measurements, the plasma extinguished, and the source needed to be restarted.
During each restart, the high voltages needed to be readjusted, resulting in different
beam conditions after each restart. Also, the accelerating and focusing voltages were
limited far beyond the manufacturer specifications. Another main problem was, that
the generated particle beam mostly consisted of ionized N, O, N2, and O2. Hydrogen
accounted for only a few percent of the beam current. Thus, it is assumed that a leak
in the ECR source allowed atmosphere to enter. Figure 3.9 shows the beam current
after the Wienfilter as function of the magnetic field of the Wienfilter. In agreement
with Equation 2.46, the first peak corresponds to the lightest ions, i.e., protons, and
with

√
B dependence the other heavier ions follow.

By now, it is understood that these problems arose from a wrongly connected
high voltage, which is going to be fixed for future measurements. However, for the
measurements presented later, this means that the measured beam was far from being
Gaussian shaped like assumed in the simulation presented in subsection 2.3.5. Also,
the different measurement runs can only be compared with caution, because the
stability of the beam energy was limited.
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Figure 3.9: Wienfilter mass spectrum of the ion beam generated by
the ECR source.

3.7.2 Spin Filter Stray Fields

Another influence on the measurement that was discovered later is that the µ-metal
shielding around the Sona unit is not sufficient. Due to that, the stray fields of
the spin filters reach inside the Sona transition unit, slightly changing its magnetic
field curve. For the first spin filter, this is effect is negligible, because during the
measurements the first spin filter fields are not changed. However, for the second spin
filter, this is not the case. As discussed before, depending on which spectrum should
be measured, a magnetic field of either 53.5 mT or 60.5 mT has to be setup inside the
second spin filter. Figure 3.10 shows the two longitudinal magnetic fields inside the
Sona transition unit for the same current inside the Sona coils, but for the different
magnetic field settings of the second spin filter. One can clearly see, that for the
60.5 mT setting, over the hole length of the Sona transition unit, an additional offset
is added to the magnetic field in comparison to the 53.5 mT setting. Figure 3.11 shows
the direct difference ∆B between the different spin filter settings. Coming closer the
to the second spin filter, the offset drastically increases, reaching a relative deviation
∆B
Bz

of up to 20 % while the average difference is in the order of less than 20 µT. This
asymmetric offset changes the shape of the magnetic field in a way that should result
in a different λ for each of the two settings. To get an idea of the magnitude of the
λ change, sine function fits were applied to the curves shown in Figure 3.10. The
relative change of λ for the two settings is approximately in the order of 0.2 %.



3.7. Problems during the Measurements 41

45 50 55 60 65 70 75
Position [cm]

4000

3000

2000

1000

0

1000

2000

3000

4000
Lo

ng
itu

di
na

l m
ag

ne
tic

 fi
el

d 
B z

 [
T]

BSF2 = 53.5 mT
BSF2 = 60.5 mT

Figure 3.10: Longitudinal magnetic fields of the Sona transition unit
for different magnetic field settings of the second spin filter (i.e. for
53.5 mT (blue) and 60.5 mT (red) in the second spin filter.). For both

lines, the current inside the Sona coils was 2 A.
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Figure 3.11: Influence of stray fields of the second spin filter on the
Sona transition unit. The difference ∆B increases as the distance to

the second spin filter decreases.
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Chapter 4

Measurements and Analysis

4.1 Principle of Measurement

As stated in chapter 1 the first goal of this thesis is to observe and measure the oscil-
lations between the occupation numbers of different hyperfine substates of metastable
2S1/2 hydrogen induced inside a Sona transition unit. To achieve this, the in chapter 3
described setup is used. A beam of unpolarized hydrogen ions is created by the ECR
ion source and made mono energetic using a Wienfilter. Inside the cesium cell, the
ions are transformed back into atoms, where some of them end up in the metastable
2S1/2 state. In the first spin filter, three out of four hyperfine substates are quenched
to the ground state and atoms in one substate, either α1 or α2, will survive. Inside
the Sona transition unit while its field is ramped, the oscillations between the different
substates occur and the metastable 2S1/2 hydrogen passes into the second spin filter
in either the α1, α2 or β3 state. Since the magnetic field of the second spin filter
is set on the fixed strength and not ramped, again only the metastable hydrogen in
one of the α-states is transmitted, quenched inside the quench chamber and detected
by the photomultiplier tube. Thereby, the measured photon intensity corresponds to
the relative amount of the respective α state that is transmitted. So, by measuring
the signal of the photomultiplier tube as function of the ramped magnetic field of
the Sona transition unit, the oscillations spectra shown in Figure 2.17 are measured
for α1 and α2, respectively. The recording of one ramping operation is counted as
a single measurement. For a better statistic, in one measurement series, multiple
measurements of the same spectrum are averaged to get one Sona spectrum for each
α state per measurement series.

Due to the problems with the ECR ion source, described in section 3.7, only twelve
measurements series could be recorded, of which only nine are complete, including the
Sona spectra for both α states. The measurements were taken at beam energies from
0.99 keV to 1.5 keV. A list of the measurements series and the measurement parameters
can be found in Appendix C. For all kinetic energies, the oscillations of the occupation
numbers could be detected. Figure 4.1 and Figure 4.2 show exemplary the measured
Sona spectra of the α1 and α2 state at a kinetic energy of Ekin = 1.27 keV. The shapes
of the other measurement series are quite similar. The oscillations are clearly visible
for all measurement series. However, each spectrum is superimposed with a non-linear
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offset function. Here, the partial negative offset in the α2 spectra is surprising. The
fact that the signal strength falls below the value at t=0 indicates that the amount
of α2 after the first spin filter is non-zero, which should not be the case and could be
an indication of beam misalignment.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [a.u.]

0.08

0.07

0.06

0.05

0.04

vo
lta

ge
 [a

.u
.]

E1270

Figure 4.1: Measured Sona spectrum of the α1 state of the measure-
ment series ’E1270_1’. The magnetic field inside the second spin filter
was at 53.5 mT. The kinetic energy of the metastable hydrogen atoms

was 1.27 keV.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [a.u.]

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.025

vo
lta

ge
 [a

.u
.]

E1270

Figure 4.2: Measured Sona spectrum of the α2 state of the measure-
ment series ’E1270’. The magnetic field inside the second spin filter
was at 60.5 mT. The kinetic energy of the metastable hydrogen atoms

was 1.27 keV.
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4.2 Principle of Analysis

The second goal of this thesis is to investigate the change in the binding energy
of 2S1/2 hydrogen, with a precision that allows to verify the in subsection 2.2.2
introduced QED corrections to the Breit-Rabi formula. However, in the experiment,
the Breit-Rabi curves can not be measured directly. The only available data are
the Sona spectra of the two α states. Therefore, the relation between the energy
difference ∆Eα1,α2 = (δEα1,QED− δEα2,QED) and ∆Eα2,β3 = (δEα2,QED− δEβ3,QED)
and the recorded Sona spectra is used to investigate the Breit-Rabi formula. Using
the Breit-Rabi formulas given in Equation 2.42, the energy differences result in

∆Eα1,α2(B) = ∆EHFS,0
2 + d1 (1 + η1)− ∆EHFS,0

2

√
1 + c2(1 + δ2) µBB2

∆EHFS,0
(4.1)

∆Eα2,β2(B) = −∆EHFS,0
2 +d1 (1 + η1)+ ∆EHFS,0

2

√
1 + c2(1 + δ2) µBB2

∆EHFS,0
. (4.2)

Figure 4.3 shows these energies differences as function of a longitudinal magnetic field.
These energy differences are the transition energies required for the polarized hydrogen
atoms to change from the β3 to the α2 state and α2 to the α1 state. The further
procedure is now to extract the transition energy as function of the longitudinal
magnetic field from the measured α spectra.

As discussed in section 2.4 the assumption is made, that the α1 spectra peaks
every time the longitudinal magnetic field inside the Sona transition unit reaches a
value where the energy difference between the α1 and α2 states is equal to an odd
multiple of the energy ∆ESona which is defined by the basic harmonic frequency of
the Sona transition unit. The same assumption is made for the relation between the
α2 spectra and the energy difference between the α2 and β3 states. So the transition
energies at the center of the peaks are according to their chronological appearance 1
∆ESona, 3 ∆ESona , ..., (2n+1) ∆ESona.

To get the magnetic field of each peak, one needs to consider that the longitudinal
magnetic field inside the Sona transition unit is not constant. So, for the purpose
of the following analysis, an average longitudinal magnetic field B = Bav has to be
assumed, that defines the Breit-Rabi diagram inside the Sona transition unit. The
specific values of this average magnetic field are not known, but it should also be a
linear function of the coil current. Since, this current is ramped linearly over time,
the measured time can be used to describe Bav, if one shifts t = 0 to the starting
point of the ramping signal. Therefore, for simplicity, the Sona spectrum is analyzed
as a function of the measured time t.
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Figure 4.3: Sona transition energy as function of the longitudi-
nal magnetic field. For increasing magnetic fields, the energy of the
∆Eα1,α2 transition (blue curve) is approaching a constant value, while
the energy of the β3 → α2 transition (red curve) becomes a linear

function.

4.2.1 Search for the Peak Positions

To calculate the position of the peak centers, the simplified assumption is made that
in first order, the resonance peaks inside a Sona spectra follow a Lorentz-like function.
Thus a simple Lorentz function is fitted on each peak to get the corresponding
measurement time of the peak center. For most of the peaks, this method works
quite well, Figure 4.4 and Figure 4.5 show exemplary the method applied to both
Sona spectra measured in the measurement series ’E1270’. However, for some peaks,
the method shows some differences between data and fit. Some peaks are deformed
at their center or their flanks, while others are not, due to the interaction between
the different hyperfine substates inside the Sona transition unit. The more a peak is
deformed, the greater is the uncertainty in the calculated position of the peak center.
This can be observed particularly well in the peaks in the middle of the α1 spectrum.
Another point that is only partially taken into account is that the measured spectra
are superimposed with an offset function. For the α1 spectrum, this seems to be a
non-linear increasing offset, while for the α2-spectra the offset seems to be much more
complex. To compensate this background effect, the fit function is allowed to assume
an individual constant offset for each peak. In this way, the center of most peaks
should still be fairly well determined.
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Figure 4.4: Lorentz curves fitted on the measured α1 spectrum of
the ’E1270’ measurement series. Data in blue, fitted Lorenz curves in

red.
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Figure 4.5: Lorentz curves fitted on the measured α2 spectrum of
the ’E1270’ measurement series. Data in blue, fitted Lorenz curves in

red.
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4.2.2 Fits to the Breit-Rabi Transition Energies

With the calculated peak positions as a function of the measured time and the
assumed transition energies in multiples of ∆ESona, at each peak, one gets a distri-
bution of data points that matches the shape of the transition energies ∆Eα1,α2 and
∆Eα2,β2 . However, to directly compare the generated data points with Equation 4.1
and Equation 4.2 one needs to rescale them. To accomplish that, two fit functions
are introduced

Nα1−α2(t) = A
(

∆EHFS,0
2 + d1 (1 + η1)− ∆EHFS,0

2

√
1 + c2(1 + δ2)µB(Bscat+ Boff )2

∆EHFS,0

)
(4.3)

Nα2−β3(t) = −A
(

∆EHFS,0
2 + d1 (1 + η1) + ∆EHFS,0

2

√
1 + c2(1 + δ2)µB(Bscat+ Boff )2

∆EHFS,0

)
.

(4.4)
Here, t is the measured time, N is the Nth multiple of ∆ESona, A is the scaling
parameter of the energy, which in theory should be 1

∆ESona
, Bsca is the scaling

parameter of the magnetic field, giving the relation between measured time and Bav,
and Boff is the magnetic field offset created by external fields, i.e. the stray fields
of the spin filter and the earth field. Figure 4.6 and Figure 4.9 shows exemplary
the result of applying the appropriate fitting functions to the data of measurement
series ’E1270’ using the least squares method. Figure 4.7 and Figure 4.10 show the
corresponding residuals. The analysis for the other measurement series showed similar
behavior. The calculated fit parameter for all measurement series can be found in
Appendix C.

Based on the plots, a few things can now be determined. First, the distribution of
the data points, generated from the position of the peak centers in the two α spectra,
fit the shapes of the transition energy curves very well and for each transition energy
curve a fit can be found. However, the fits do not agree with each other. Looking
at Figure 4.6 and Figure 4.9, one can see that only for the energy transition curve
whose fit parameters were used, the curve fits the data. This becomes especially clear
when looking at the residuals in Figure 4.7 and Figure 4.10, where the measured data
points of the transition whose fit parameters were not used run away linearly with
increasing measurement time. Comparing the fit parameter of the different transitions
directly, one finds that only the calculated fit parameters of the α1 − α2 transition
fits are in the range of the expected Sona energy. As pointed out above, using the
relation A = 1

∆ESona
, the fitting parameter A can be used to calculate ∆ESona. For

the "E1270" measurement series, assuming that the kinetic energy of the particles
was 1.270 keV and the λ of the Sona transition field was approximately 27 cm, a Sona
energy of ∆ESona ≈ 7.56 eV is expected. However, the fit for the α2 − β3 transition
delivers a result of 6.2 ± 0.5 neV, while the fit for the α1 − α2 transition delivers a
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value of 7.44± 0.05 neV. Why the results for the two transitions differ so much and
only roughly fit the expected value has not yet been determined and needs further
investigation.

Another mayor point that needs to be discussed is that the calculated uncertainties
for each data point seems to be too to small. Considering Figure 4.8 and Figure 4.11,
which show only the residuals for the transition after which was fitted, it becomes
apparent that the data points do not match the fits within the scope of their uncer-
tainties. The uncertainties given here are only defined by the uncertainties on the
calculated peak positions in the respective α spectra. Moreover, the spread of the
residuals of the α1 − α2 transition is generally always an order of magnitude smaller
than that of the α2 − β3 transition. In total, for the α2 − β3 transition, the data
points deviate at most in the order of 0.3×∆ESona (≈ 1.5 neV), while for the α1−α2

they always deviate below 0.1×∆ESona (≈ 0.7 neV). In general, it appears that the
uncertainties of the individual data points are far too small.
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Figure 4.6: Plot of the measured data points and fit functions using
the parameters of the α1 − α2 transition fit of the measurement series
’E1270’. Blue: (α1 − α2), red: (α2 − β3), the x-marker show the data
points, the dashed lines (- -) show Equation 4.1 and Equation 4.2 using

the parameters of the α1 − α2 fit.
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Figure 4.7: Residuals of the α1 − α2 transition energy fits of the
measurement series ’E1270’.
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Figure 4.8: Residuals of the α1 − α2 transition energy fits of the
measurement series ’E1270’ (only α1 − α2).
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Figure 4.9: Plot of the measured data points and fit functions using
the parameters of the α1 − α2 transition fit of the measurement series
’E1270’. Blue: (α1 − α2), red: (α2 − β3), the x-marker show the data
points, the dashed lines (- -) show Equation 4.1 and Equation 4.2 while

using the parameters of the α2 − β3 fit.
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Figure 4.10: Residuals of the α2 − β3 transition energy fits of the
measurement series ’E1270’.
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Figure 4.11: Residuals of the α2 − β3 transition energy fits of the
measurement series ’E1270’ (only α2 − β3).
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4.3 Comparison of the Measurements Series

Since all the series of measurements were performed with the same experimental
setup, in particular with the same Sona setup, the fits should give the same magnetic
fit parameters Bsca and Boff for each of the measurement series, regardless of the
kinetic energy chosen in the ECR source. Furthermore, since ∆ESona is a function of
the kinetic energy of the beam Ekin, and again using the fact that the Sona setup is
always the same, one can derive the following relation

∆ESona = h

λ

√
2Ekin
mp

. (4.5)

Again using the relation A = 1
∆ESona

, one can calculate λ of the Sona transition unit
by plotting the calculated ∆ESona as a function of the different kinetic energies and
using Equation 4.5 as fit function with λ as the only free parameter. Figure 4.12
shows the result of this fit, with Figure 4.13 showing a close-up of the area of interest.
Figure 4.14, and Figure 4.15 show the magnetic fit parameters of each measurement
series as a function of Ekin. Table 4.1 lists the averages for the magnetic parameters
and the calculated λ for all measurements for each transition, respectively.

Looking at the plots and the values for the fit parameters in Appendix A, it
becomes apparent that over all measurement series, the result for each transition on
its own are consistent. However, the results of the transitions do not agree with each
other. Looking at Table 4.1, one can see that for all three fit parameters, the results
diverge by a multiple of the calculated uncertainties. Furthermore, only the calculated
λ of the α1−α2 transition is roughly in the area of the expected λ = 27 cm. Moreover,
the uncertainties of the α1 − α2 transition for all parameters are again much smaller
than those of the α2 − β3 transition. A discussion of the possible reasons explaining
all these discrepancies can be found in chapter 5.

Table 4.1: List of the magnetic fit parameter and the calculated λ of
the Sona transition unit for both transitions.

transition λ [cm] Bsca [mT s−1] Boff [mT]
α1 − α2 27.30± 0.05 1.69± 0.01 −0.061± 0.002
α2 − β3 33.8± 0.5 1.47± 0.03 −0.049± 0.003
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Figure 4.12: Energy of the basic photon energy ∆ESona as function
of Ekin for all measurement series. α1 − α2 transition in blue, α2 − β3
transition in red. The dashed lines (- -) show the fit for relation between

∆ESona and Ekin for each transition.
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Figure 4.13: Energy of the basic photon energy ∆ESona as function
of Ekin for all measurement series (Zoom). α1 − α2 transition in blue,
α2−β3 transition in red. The dashed lines (- -) show the fit for relation

between ∆ESona and Ekin for each transition.
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Figure 4.14: Magnetic scaling parameter Bsca as function of Ekin for
all measurement series. α1 − α2 transition in blue, α2 − β3 transition
in red. The dashed lines (- -) are the average values for each transition.
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Figure 4.15: Magnetic offset parameter Boff as function of Ekin for
all measurement series. α1 − α2 transition in blue, α2 − β3 transition
in red. The dashed lines (- -) are the average values for each transition.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

As far as the first goal of this thesis is concerned, it looks like that the experiment
presented in chapter 3 is generally suitable for measuring oscillations between occupa-
tion numbers of the different hyperfine substates of metastable 2S1/2 hydrogen. For
a variety of kinetic energies of the hydrogen atoms, the oscillations induced by the
Sona transition units were recorded. Thereby, the signal strength of the recorded
spectra even reached much higher values than in previous experiments. However,
while performing the measurements, it became apparent that the setup has a series of
issues that negatively influenced the data taking. Firstly, it was discovered that the
shielding of the Sona transition unit is not sufficient and thereby the stray fields of
the second spin filter are influencing the shape of the magnetic field inside the Sona
transition unit. Secondly, the ECR source does not work properly. Only for short
periods of time, a stable plasma beam could be produced, which limited the amount
of data that could be taken.

With regard to the second goal of this thesis, the situation is more complicated.
The here presented analysis is not able to reach the small energy uncertainties of less
than 10−11 eV that are needed to verify the QED corrections, although the fits for
the α1 − α2 transition came close to this value and reached uncertainties of multiples
of 10−11 eV. Moreover, the analysis of the measured data provides different sets
of parameters for the two transitions, which physically cannot be. The question
therefore arises whether the method of analysis is generally not accurate enough and
therefore not suitable, or whether there was an undetected problem with the data
taking. During the measurements and analysis, the following things were noticed that
could explain some discrepancies:

Search for the positions of the peak centers:
One problem of the fitting method seems to be the search for the positions of
the peak centers. The residual plots of the individual fits for each measurement
series shown in subsection 4.2.2 suggest that in search for the position of the
peak centers, simple Lorentz fits are not accurate enough. From the beginning, it
was already clear that the Lorentz curve is only an oversimplified approximation
for the shape of the peaks. Due to the interference of the transitions, e.g. the



58 Chapter 5. Conclusions and Outlook

α1 − α2 transition can only happen, if α2 state is populated (see. section 2.4),
the peaks are systematically deformed. As a result, the calculated positions
of the peak centers should be shifted compared to their true positions. This
systematic effect should have a much stronger influence on the α2−β3 transition
analysis, due to the small width of the peaks in the α2 spectrum. This, in turn,
could explain why the uncertainties of the fitting parameters of the α2 − β3

transition are so large compared to their spread around the average values (see
figures in section 4.3).

Spin filter stray fields:
Another point are the stray fields of the spin filter. As pointed out in subsec-
tion 3.7.2, if the magnetic field of the second spin filter is increased from 53.5 mT
to 60.5 mT, the shape of the magnetic field changes and with it the λ of the
Sona transition is modified as well. This means that depending on whether the
α1 or α2 spectrum is measured, different ∆ESona can be expected for the same
kinetic energy of the particles. However, the resulting change in λ is likely to
be only of the order of 0.2 % and therefore cannot explain the large discrepancy
of 20 % resulting from the analysis. Looking at Figure 3.11, we see that the
stray fields also produce an additional magnetic offset, which has an average
value of about 20 mT. This value in turn is of the same order of magnitude as
the difference between the two calculated magnetic offset parameters Boff (see
Figure 4.15).

Correlation of the fit parameters:
An additional problem of the fit method is that the fit parameter A and Bsca

are correlated. Up to a certain point, increasing A and decreasing Bsca results
in a similar fitting curve. However, for the α2−β3 transition, since the function
becomes more and more straight with increasing magnetic fields, the correlation
is rather strong, while for the α1−α2 transition, the correlations is much weaker
due to the slope of the α1 − α2 transition energy function. This could explain,
why the uncertainties of the α2 − β3 transition fit parameters are always much
bigger than the ones of the α1 − α2 transition.

Possible non linearity between measured time and magnetic field:
Another explanation for the discrepancies between the two transitions could be
a non-linearly increasing magnetic field as a function of the measured time t. For
the analysis, it was assumed that the relationship between t and the longitudinal
magnetic field inside the Sona transition unit was linear. In preparatory mea-
surements, it was tested that the ramp generator produces an almost perfectly
linear voltage as a function of the measured time. The relationship between
the current of the Sona coil and the magnetic field strength was also found
to be almost perfectly linear. However, it was not tested whether the output
current of the power supply feeding the Sona coils was a linear function of the
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control signal supplied by the ramp generator. Therefore, a nonlinearity may
have occurred at this point, which is currently being investigated.

Nevertheless, the calculated data points, consisting of the position of the peak
center and the corresponding multiples of ∆ESona, follow clearly the transition energy
functions calculated with the Brei-Rabi formula. For the α1 − α2 transition, the
fitting method is able to deliver fits which match the measured data within very
small uncertainties, which shows the potential of this experiment. However, it still
has to be investigated why the results for the α2 − β3 transition fits are so far away
from the expected values and why they disagree with the calculated parameters of
α1−α2 transition (see figures in section 4.3). In particular, it needs to be determined
whether this is caused by the analysis method or by unknown systematics within the
experiment that have not yet been discovered. The latter seems to be more likely
at this point, since this systematics did not appear in earlier measurements (cf. [8]
and [18]), and the old analysis method is also unable to provide a reasonable solution.
Therefore, it is very important to perform further measurements with this setup, on
the one hand to obtain more data for better statistics, and on the other hand to
determine if there is indeed an unknown systematic, and if so, what causes it.

5.2 Outlook

A series of improvements to the experimental setup are foreseen for the future or
undergoing at the moment. As already mentioned in subsection 3.7.1, the high
voltage connections of the ECR ion source are now going to be connected correctly, so
that for future measurement runs a well shaped hydrogen beam with an even higher
intensity can be expected. Also the shielding of the Sona transition unit is going to
be improved so that the stray fields of the spin filters will no longer influence the
magnetic field inside the Sona transition unit, so that the basic transition energy
∆ESona is the same for all spectra.

Moreover, for the near future, a redesign of the Sona transition unit is foreseen.
The coils of this new Sona transition unit will be arranged in a way that the resulting
shape of the magnetic field comes as close as possible to the shape of a sine-function. In
that way, it should be possible to calculate the resulting wavelength λ in advance with
a relative uncertainty of 10−3, and the measured spectra can be directly compared to
simulations. Furthermore, a spin filter with a complete new design is in preparation.
This new spin filter will provide the ability to use two radiofrequencies. With this,
not only the two α-states can be measured, but the β states as well, so that all three
for this experiment relevant substate spectra can be investigated.

Another thing which can be investigated, which is already possible with the
current setup, is to measure the combined signal of both α states. By switching off
the radiofrequency in the second spin filter, the α and e states are no longer coupled.
This allows both α states to be transmitted into the quench chamber. This could be
one way to get a simpler spectrum which is free of the interactions between the two
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α states, because the atoms in the β3 state will move into a superposition of the α1

and α2 state.
In terms of the analysis, new methods to find the peak positions are under inves-

tigation. One possible approach could be to fit the measured spectra in combination
which each other, using rate equations generated from numerical simulations. There
is hope that this approach will lead to better results, because it is intended to account
for the interaction between the different states. A working analysis method should
allow performing spectroscopy of metastable hydrogen with uncertainties in the range
of less than 10−11 eV.



61

Appendix A

Breit Rabi formula Coefficients

Table A.1 lists the numerical values of the Breit-Rabi formula coefficients of hydrogen
for the 2S1/2- and 2P1/2-state, taken from [38].

Atom H1
1(1S1/2) / H1

1(2S1/2) H1
1(2P1/2)

gj 2.002310441392(22) 0.6651585(46)
〈r2〉1/2 0.879(9) fm 0.879(9) fm
I 1/2 1/2
ε2 (= η2) 2.62894 · 105 −2.50741(2) · 109

c2 4.02143867224(16) 0.446492(6)
δ2 −0.00000001346 −0.001348954(10)
c2(1 + δ2) 4.02143861810(16) 0.445890(6)
d1 0.99963418853(2) 0.331058(2)
η1 0.000000006752 0.000680675(5)
d1(1 + η1) 0.99963419528(2) 0.331284(2)

Table A.1: Numerical values of the Breit-Rabi formula coefficients
of hydrogen.
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Photos of the Experimental
Setup

In the following, photos of the experimental setup that is located in a laboratory at
the Institut für Kernphysik at the Forschungszentrum Jülich is presented.

Figure B.1: Photo of the complete experimental setup.
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Figure B.2: Photo of the ECR ion source. On the right side, one can
see the radiofrequency, water and hydrogen connection lines. On the

left side starts the cross connection tube.

Figure B.3: Photo of the Wienfilter. On the top, one sees the water
connection line. On the right side ends the cross connection tube. On

the left side, the first valve of the cesium cell is visible.
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Figure B.4: Photo of the cesium cell. Attached to each side is a
valve. On the left side starts the first spin filter. On the right side

ends the Wienfilter.

Figure B.5: Photo of the first spin filter. On the right side, the
second valve of the cesium cell is visible. On the left side, one can see
the connection pipe that leads to the Sona transition unit (Here it is

disconnected).
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Figure B.6: Photo of the Sona transition unit. On both sides, the
spin fitlers are visible.

Figure B.7: Photo of the second spin filter. On the right side, the
connection pipe that leads to the Sona transition is visible. On the left

side starts the quench chamber.
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Figure B.8: Photo of the quench chamber with the photomultiplier
tube on top. In the center right, the Faraday cup is visible. In front of
the quench chamber a ventilation valve and a pressure gauge can be

seen.
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Figure B.9: Photo of the cross connection between ECR and Wien-
filter, with a viewing window and a pressure gauge on top. On the

bottom, a turbo molecular pump is mounted.
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Appendix C

Listing of the Measurement and
Fit Parameters

C.1 Listing of the Measurement Parameters

Twelve different measurement series were recorded. The beam energies1 were between
0.99 keV and 1.5 keV. Only for eight measurement series, both spectra could be
recorded. The wavelength of the Sona transition unit was assumed to be λ = 27 cm.

Table C.1: List of the measurement series.

measurement series kin. Energy [neV] expected ∆ESona [neV] recorded Spectra
E990_1 990 6.67 α1 & α2

E990_2 990 6.67 α1 & α2

E1000 1000 6.70 α1

E1010 1010 6.74 α1 & α2

E1050 1050 6.87 α1 & α2

E1270 1270 7.56 α1 & α2

E1280_1 1280 7.59 α2

E1280_2 1280 7.59 α1

E1280_3 1280 7.59 α1

E1290 1290 7.61 α1 & α2

E1500_1 1500 8.21 α1 & α2

E1500_2 1500 8.21 α1 & α2

1Remember that it is not clear whether the hydrogen atoms actually reached these energies. See
subsection 3.7.1.
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C.2 Listing of the Fit Parameters

In the following table, the fit parameter calculated for each measurement series and
each transition are listed. The measurement series ’E1000’ and ’E1280_2’ were not
analyzed because the recorded spectra have too low a resolution.

Table C.2: List of the fit parameters for the analyzed measurement
series.

measurement series transition 1
A = ∆ESona [neV] Bsca [mT s−1] Boff [mT]

E990_1
α1 − α2 6.62± 0.06 1.682± 0.026 −0.064± 0.008
α2 − β3 5.5± 0.5 1.51± 0.09 −0.033± 0.009

E990_2
α1 − α2 6.60± 0.04 1.699± 0.017 −0.054± 0.005
α2 − β3 5.5± 0.5 1.50± 0.11 −0.038± 0.010

E1010
α1 − α2 6.64± 0.05 1.683± 0.020 −0.068± 0.006
α2 − β3 5.3± 0.4 1.46± 0.08 −0.048± 0.008

E1050
α1 − α2 6.76± 0.04 1.693± 0.018 −0.067± 0.006
α2 − β3 5.7± 0.6 1.51± 0.11 −0.048± 0.010

E1270
α1 − α2 7.44± 0.05 1.664± 0.016 −0.038± 0.005
α2 − β3 6.2± 0.5 1.50± 0.09 −0.059± 0.008

E1280_1 α2 − β3 6.1± 0.5 1.46± 0.08 −0.041± 0.008
E1280_3 α1 − α2 7.48± 0.07 1.665± 0.024 −0.071± 0.007

E1290
α1 − α2 7.52± 0.06 1.680± 0.019 −0.060± 0.006
α2 − β3 6.1± 0.5 1.46± 0.09 −0.064± 0.007

E1500_1
α1 − α2 8.20± 0.07 1.691± 0.022 −0.070± 0.007
α2 − β3 6.4± 0.06 1.43± 0.10 −0.044± 0.009

E1500_2
α1 − α2 8.22± 0.06 1.716± 0.022 −0.095± 0.007
α2 − β3 5.9± 0.6 1.34± 0.10 −0.058± 0.009
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