001     907341
005     20230123110615.0
024 7 _ |a 10.1016/j.scitotenv.2021.152141
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/31072
|2 Handle
024 7 _ |a altmetric:124541464
|2 altmetric
024 7 _ |a pmid:34871694
|2 pmid
024 7 _ |a WOS:000740193300016
|2 WOS
037 _ _ |a FZJ-2022-01976
082 _ _ |a 610
100 1 _ |a Wei, Jing
|0 P:(DE-Juel1)165707
|b 0
|e Corresponding author
245 _ _ |a Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650948515_29873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Increasing evidence has been found that chemical reactions affect significantly the terrestrial nitrogen (N) cycle, which was previously assumed to be mainly dominated by biological processes. Due to the limitation of knowledge and analytical techniques, it is currently challenging to discern the contribution of biotic and abiotic processes to the terrestrial N cycle for geobiologists and biogeochemists alike. To better understand the role of abiotic reactions in the terrestrial N cycle, it is necessary to comprehend the chemical controls on nitrogenous trace gas emissions and N retention in soil under various environmental conditions. In this manuscript, we assess the role of abiotic reactions in nitrous oxide (N2O) and nitric oxide (NO) emissions as well as N retention through a meta-analysis using all related peer-reviewed publications before August 2020. Results show that abiotic reactions contributed 29.3–37.7% and 44.0–57.0% to the total N2O emission and N retention, representing 3.7–4.7 and 4.0–6.0 Tg year−1 of global terrestrial N2O emission and N retention, respectively. Much higher NO production was observed in sterilized soils than that in unsterilized treatments indicating the major contribution of chemical reactions to NO emission and rapid microbial reduction of NO to N2O and N2. Chemical hydroxylamine oxidation accounts for the largest abiotic contribution to N2O emission, while chemical nitrite reduction and fixation represent for the largest contribution to abiotic NO production and soil N retention, respectively. Factors influencing the abiotic processes include pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon to nitrogen (C/N), and transition metals. These results broadened our knowledge about the mechanisms involved in chemical N reactions and provided a simplified estimation about their contribution to nitrogenous trace gas emission and N retention, which is meaningful to further study interactions of biologically and chemically mediated reactions in biogeochemical N cycle.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Xinying
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xia, Longlong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yuan, Wenping
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhou, Zhanyan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 5
|u fzj
773 _ _ |a 10.1016/j.scitotenv.2021.152141
|g Vol. 808, p. 152141 -
|0 PERI:(DE-600)1498726-0
|p 152141 -
|t The science of the total environment
|v 808
|y 2022
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/907341/files/Wei%20etal%20%28Sci%20Tot%20Environ%29%20Postprint.pdf
|y Published on 2021-12-04. Available in OpenAccess from 2023-12-04.
909 C O |o oai:juser.fz-juelich.de:907341
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142357
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-08
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI TOTAL ENVIRON : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21