000907375 001__ 907375
000907375 005__ 20220510190039.0
000907375 020__ $$a978-3-95806-621-2
000907375 0247_ $$2Handle$$a2128/31143
000907375 037__ $$aFZJ-2022-01997
000907375 1001_ $$0P:(DE-Juel1)174385$$aZhang, Lichuan$$b0$$eCorresponding author$$ufzj
000907375 245__ $$aTopological magnonic properties of two-dimensional magnetic materials$$f - 2022-03-10
000907375 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2022
000907375 300__ $$a154 p.
000907375 3367_ $$2DataCite$$aOutput Types/Dissertation
000907375 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000907375 3367_ $$2ORCID$$aDISSERTATION
000907375 3367_ $$2BibTeX$$aPHDTHESIS
000907375 3367_ $$02$$2EndNote$$aThesis
000907375 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1652178667_28215
000907375 3367_ $$2DRIVER$$adoctoralThesis
000907375 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies$$v253
000907375 502__ $$aDissertation, RWTH Aachen University, 2022$$bDissertation$$cRWTH Aachen University$$d2022
000907375 520__ $$aSpintronics is based on the transport of information by the spin of electronsrather than charge current so as to avoid the Joule heat. Among it,magnons, as the most elementary excitations in magnetic materials, haveemerged as a prominent tool in electrical and thermal manipulation andtransport of spin. Importantly, magnonics as a field is considered as one ofthe pillars of modern spintronics.In this thesis, the linear spin-wave theory is utilized to explore the magnonicproperties based on the effective spin Hamiltonian, parameterizedfrom the first-principles calculations and fitting to experiments. Inspired bythe experimental result, a family of two-dimensional metal-organic frameworkswith the Shastry-Sutherland lattice are calculated from first-principles,and corresponding applications in spintronics and magnonics are investigatedin the thesis. Additionally, combined with inelastic neutron scatteringresults, the magnonic topological properties are systematically exploredin the multiferroic ferrimagnet Cu2OSeO3. The experimental magnon dispersionsare well fitted, when considering the Heisenberg-Dzyaloshinsky-Moriya interaction model, and the Weyl points are forecasted whose positioncan be controlled by changing the Dzyaloshinsky-Moriya interaction ofthe material. Moreover, a measurable thermal Hall conductivity is predicted,which can be associated with the emergence of the Weyl points.Notably, in realistic two-dimensional materials, e.g., ferromagnetic honeycombmaterials, the Dzyloshinskii-Moriya interaction is often accompaniedby the Kitaev interaction, which poses a challenge to distinguish theirmagnitude. In the thesis, we demonstrate that it can be done by accessingmagnonic transport properties and rotating the magnetization in the system.By studying honeycomb ferromagnets that exhibit at the same time theDzyaloshinskii-Moriya interaction and Kitaev interaction, complex magnonictopological properties are revealed accompanied by intricate magnonic transportcharacteristics represented by thermal Hall and magnon Nernst effects.Moreover, the effect of a in-plane magnetic field is investigated, showingthat it can break the symmetry of the system and bring drastic modificationsto magnonic topological transport properties, serving as hallmarks of therelative strength for anisotropic exchange interactions. Furthermore, basedon our proposed strategy, the spin interactions in CrSiTe3 and CrGeTe3 arepredicted and their potential applications in topological magnonics are explored.
000907375 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907375 8564_ $$uhttps://juser.fz-juelich.de/record/907375/files/Schluesseltech_253.pdf$$yOpenAccess
000907375 909CO $$ooai:juser.fz-juelich.de:907375$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000907375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174385$$aForschungszentrum Jülich$$b0$$kFZJ
000907375 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907375 9141_ $$y2022
000907375 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907375 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907375 920__ $$lyes
000907375 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000907375 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000907375 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000907375 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000907375 980__ $$aphd
000907375 980__ $$aVDB
000907375 980__ $$aUNRESTRICTED
000907375 980__ $$abook
000907375 980__ $$aI:(DE-Juel1)PGI-1-20110106
000907375 980__ $$aI:(DE-Juel1)IAS-1-20090406
000907375 980__ $$aI:(DE-82)080009_20140620
000907375 980__ $$aI:(DE-82)080012_20140620
000907375 9801_ $$aFullTexts