000907384 001__ 907384
000907384 005__ 20240625095115.0
000907384 0247_ $$2doi$$a10.3389/fcell.2022.886568
000907384 0247_ $$2Handle$$a2128/31081
000907384 0247_ $$2altmetric$$aaltmetric:127397733
000907384 0247_ $$2WOS$$aWOS:000795047600001
000907384 037__ $$aFZJ-2022-02005
000907384 082__ $$a570
000907384 1001_ $$0P:(DE-Juel1)188787$$aHoang Gia, Linh$$b0
000907384 245__ $$aMultiple Poses and Thermodynamics of Ligands Targeting Protein Surfaces: The Case of Furosemide Binding to mitoNEET in Aqueous Solution
000907384 260__ $$aLausanne$$bFrontiers Media$$c2022
000907384 3367_ $$2DRIVER$$aarticle
000907384 3367_ $$2DataCite$$aOutput Types/Journal article
000907384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651050613_25271
000907384 3367_ $$2BibTeX$$aARTICLE
000907384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907384 3367_ $$00$$2EndNote$$aJournal Article
000907384 520__ $$aHuman NEET proteins, such as NAF-1 and mitoNEET, are homodimeric, redox iron-sulfur proteins characterized by triple cysteine and one histidine-coordinated [2Fe-2S] cluster. They exist in an oxidized and reduced state. Abnormal release of the cluster is implicated in a variety of diseases, including cancer and neurodegeneration. The computer-aided and structure-based design of ligands affecting cluster release is of paramount importance from a pharmaceutical perspective. Unfortunately, experimental structural information so far is limited to only one ligand/protein complex. This is the X-ray structure of furosemide bound to oxidized mitoNEET. Here we employ an enhanced sampling approach, Localized Volume-based Metadynamics, developed by some of us, to identify binding poses of furosemide to human mitoNEET protein in solution. The binding modes show a high variability within the same shallow binding pocket on the protein surface identified in the X-ray structure. Among the different binding conformations, one of them is in agreement with the crystal structure’s one. This conformation might have been overstabilized in the latter because of the presence of crystal packing interactions, absent in solution. The calculated binding affinity is compatible with experimental data. Our protocol can be used in a straightforward manner in drug design campaigns targeting this pharmaceutically important family of proteins.
000907384 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907384 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000907384 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x2
000907384 536__ $$0G:(GEPRIS)291198853$$aDFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - $$c291198853$$x3
000907384 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907384 7001_ $$0P:(DE-HGF)0$$aGoßen, Jonas$$b1
000907384 7001_ $$0P:(DE-HGF)0$$aCapelli, Riccardo$$b2$$eCorresponding author
000907384 7001_ $$0P:(DE-HGF)0$$aNguyen, Toan T.$$b3
000907384 7001_ $$0P:(DE-HGF)0$$aSun, Zhaoxi$$b4
000907384 7001_ $$0P:(DE-Juel1)192214$$aZuo, Ke$$b5
000907384 7001_ $$0P:(DE-Juel1)171786$$aSchulz, Jörg B.$$b6
000907384 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b7$$eCorresponding author
000907384 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b8
000907384 773__ $$0PERI:(DE-600)2737824-X$$a10.3389/fcell.2022.886568$$gVol. 10, p. 886568$$p886568$$tFrontiers in cell and developmental biology$$v10$$x2296-634X$$y2022
000907384 8564_ $$uhttps://juser.fz-juelich.de/record/907384/files/fcell-10-886568.pdf$$yOpenAccess
000907384 8767_ $$d2022-01-18$$eAPC$$jDeposit$$z2507,50 USD
000907384 909CO $$ooai:juser.fz-juelich.de:907384$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188787$$aForschungszentrum Jülich$$b0$$kFZJ
000907384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192214$$aForschungszentrum Jülich$$b5$$kFZJ
000907384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171786$$aForschungszentrum Jülich$$b6$$kFZJ
000907384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b7$$kFZJ
000907384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b8$$kFZJ
000907384 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907384 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000907384 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x2
000907384 9141_ $$y2022
000907384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907384 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000907384 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907384 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000907384 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907384 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000907384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL DEV BIOL : 2021$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:29:32Z
000907384 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:29:32Z
000907384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:29:32Z
000907384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000907384 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CELL DEV BIOL : 2021$$d2022-11-12
000907384 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907384 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907384 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907384 920__ $$lyes
000907384 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000907384 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000907384 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000907384 9801_ $$aFullTexts
000907384 980__ $$ajournal
000907384 980__ $$aVDB
000907384 980__ $$aUNRESTRICTED
000907384 980__ $$aI:(DE-Juel1)IAS-5-20120330
000907384 980__ $$aI:(DE-Juel1)INM-9-20140121
000907384 980__ $$aI:(DE-Juel1)JSC-20090406
000907384 980__ $$aAPC