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1.1 Introduction

Dislocations in semiconductors have been studied extensively for Si and GaAs, both of which
have a face centred cubic crystal structure. Such crystal boules are grown from the melt
using the Czochralski and floating zone method in the case of Si, and liquid encapsulated
Czochralski and vertical gradient freeze method in the case of GaAs. The application of
the so-called Dash necking technique [1] allows the reduction of the dislocation density in
Si during the initial seeding growth stage down to a zero dislocation density value and then
to retain this state throughout the complete growth process. Si ingots of up to 450 mm in
diameter and wafers cut from those with a dislocation density of 0cm™2 nowadays can be
considered state of the art. GaAs as compared to Si has different thermo-elastic properties
and exhibits a greater brittleness, which is why growth of “zero dislocation” GaAs succeeded
only up to a crystal diameter of roughly 70mm [2]. GaAs crystal boules with a diameter
>100 mm exhibit dislocation densities of approximately 100 cm~2 to 3000 cm~2. There, dis-
locations often cluster or form dislocation networks, sometimes termed dislocation patterns,
that consist in a inhomogeneous dislocation distribution with regions of very low density
bounded by strongly localized regions of very high densities. Due to the performance killing
impact of dislocations on electronic devices, their propagation, multiplication and annihila-
tion has been studied in many aspects. Usually, the study of dislocation behavior during
bulk growth is related to thermo-elastic strain in the growing crystal. For a recent overview
please refer to the “Handbook of crystal growth — bulk growth” edited by P. Rudolph [3] and
to the recent work [4, 5] which particularly considers the formation of cellular dislocation
networks also in SiC. Besides high dislocation densities and small angle grain boundaries,



also micro-pipes and super-screw dislocations with Burgers vectors larger than the c-lattice
parameter are an important issue in SiC growth [6]. Last but not least stacking faults
together with the occurring partial dislocations of different core structures form extended
defects, especially in non-cubic semiconductors such as nitrides and SiC [6]. This makes SiC
a particularly interesting model system for defects in non-cubic semiconductor crystals.

In the following, we first introduce the state of the art in terms of modeling and simulation
approaches. After that we concentrate on continuum modeling approaches for dislocation
emphasis on two specific model classes, the Alexander-Haasen model and continuum dislo-
cation dynamics models. This is followed by numerical examples that demonstrate different
features of evolving dislocation structures: the first example shows that the ability to repre-
sent the flow of dislocations is important; the second example deals with dislocation motion
between dislocation veins which act as strong obstacles for the motion of dislocations. We
then summarize our work and put it into the perspective of ongoing research.

1.2 General Modeling and Simulation approaches

There are many modeling and simulation approaches for defect-related phenomena on (sub)
nanometer length scales. E.g., in the context of defects in semiconductors, Lazewski [7] used
density function theory for investigating the electrostatic barrier near the core of a pair of
edge dislocations, and a number of authors, among them Rao [§], Oren [9], Zhou [10], Chen
[11] applied molecular dynamics simulation for simulating dislocation in various materials
such as, e.g., B3-GaN. However, such simulations are — for reasons of computational cost —
not appropriate for simulating the structure-property relation of specimens on a macroscopic
length scale. Discrete dislocation dynamics (DDD) simulations [12-17] have been used only in
rare cases with simulation codes from the metal plasticity community [18] and also suffer from
a large computational cost. Nonetheless, they are able to simulate larger volumes/numbers
of interacting dislocations than atomistic simulations. In the field of metal plasticity, phase
field methods for dislocation dynamics gained some popularity [19, 20]. They do not resolve
individual atoms but are still able to represent the dislocation core energy in some physical
detail — unlike the DDD methods most of which are based on linear elasticity approaches.
So far, there have been no applications to the domain of semiconductors.

Most of the (commercially) available software for macroscopic modeling on the device
scale of semiconductors usually is only able to computes thermal stress during the growth
process and, based on this, to roughly estimates the dislocation density based on a resolved
shear stress; neither strain hardening nor details of the nucleation process or the flow of
dislocations can be considered. Among the most commonly used phenomenological model
is the Alexander-Haasen model (AH model) [21], which is utilized in a range of different
formulations to semi-quantitatively describe dislocation structures. [22, 23] developed an
elastic-viscoplastic type of constitutive equation for predicting the quantity of dislocation
density. Ide [24] analyzed the influence of oxygen diffusion on dislocation density during
crystal growth and during the cooling processes. State of the art simulation methods fur-
thermore embed the AH model into a crystal plasticity finite element model [25-27] and
thereby also consider the influence of the crystallographic orientations and slip systems on
the resolved shear stress.



A novel type of continuum models is motivated by work that, so far, has been under-
taken only within the small-scale metal plasticity field. The so-called Continuum Disloca-
tion Dynamics (CDD) theory [28-32] is a strongly enhanced continuum crystal plasticity
formulations in terms of additional microstructural information (i.e. detailed geometrical
information of dislocation) and their non-local evolution equations (describing dislocation
flow). The result is a continuum theory that is almost as detailed as a discrete disloca-
tion dynamics model but that does not suffer from the same computational restriction [33]:
the computational time in DDD simulations scales almost quadratically with the number
of interacting line segments, while for the CDD theory the number of dislocations has no
influence, which allows for computational models that can eventually reach length and time
scales comparable to experimental ones. As opposed to other continuum approaches, CDD
can naturally differentiate and convert between straight and curved dislocations, as well as

between ‘geometrically necessary dislocations’ (GNDs) and ‘statistically stored dislocations’
(SSDs) [31, 29].

1.3 Continuum Dislocation Modelling approaches

Continuum models for predicting the evolution of dislocations have been used for more than
half a century. The popularity is a result of the fact that continuous representations do not
resolve each individual dislocation but rather operate with continuous density fields. The
benefit is that the computational cost can be strongly reduced due to the fact that a den-
sity, i.e., the dislocation line length per volume is just a single number regardless how many
dislocations are present. Thus, the computational cost does not scale with the number of in-
teracting dislocations or atoms. The drawback is that a density value is not able to represent
all details of the potentially complex dislocation microstructure [34-36]. In the following,
we will introduce the theoretical background of two different models, the Alexander-Haasen
model and the Continuum Dislocation Dynamics theory.

1.3.1 Alexander-Haasen model

The Alexander-Haasen (AH) model [21] is based on the standard assumption of additive
decomposition of the total strain rate & into an elastic part €%, a thermal part €™ and a
plastic contribution &' as, & = ¢ + &™ 4 P!, Thermal loading causes thermal eigenstrains
€' while the mechanical loading gives rise to elastic strains €°, and additionally the presence
of dislocations causes eigenstrains eP!. Explicitly solving the (anisotropic) elastic boundary
value problem yields stresses o. Projecting those by application of the symmetric projection
tensor My = n ® s, with the slip plane normal vector m and the slip direction s gives
resolved shear stresses 7.5 in the local coordinate system of the respective slip systems s.
The plastic shear strain contribution to P! in the slip coordinate system is obtained from the
Orowan equation, éP' = p,,bv, with the modulus of the Burgers vector b, the density of mobile
dislocations p,, and the velocity of mobile dislocations v. The latter is phenomenologically
given as a function of temperature and local effective stress

v =1 (:ﬁ—:)mexp (_k:];%) S1gN(Tres) (1.1)



where kg is the Boltzmann constant, () is the activation enthalpy, 7" is the temperature, and
m is a fitting parameter. Furthermore, the effective shear stress is

() for (- >0

0 for (-) <0 (1-2)
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Therein, the yield stress 7, governs dislocation interactions and is given by the so-called
Taylor relation [37], 7, = aGby/pm, with a constant a typically in the range of 0.2...0.5 and
the shear modulus GG. The yield stress acts like a friction stress which has to be overcome
for plastic activity to take place. The set of equations is completed by a constitutive rate
expression for the dislocation density of the form
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with parameters A\ and 79. Model extensions may separately consider evolution equations
for mobile and immobile dislocations but are not able to convert the former into the latter
quantity, or vice versa (cf. [38] for a discussion of the shortcomings of these models).

This macroscopic constitutive model might be used for obtaining a rough estimate of the
order of magnitude of dislocation density in situations where homogeneous plasticity can
be assumed. However, it is generally not possible to decide a priori whether homogeneous
plasticity can be assumed or not. The AH-model fails to predict fluxes of dislocations since it
is a local model, given as an ordinary differential equation. It therefore also cannot represent,
e.g., loss of dislocations through surfaces, as has been investigated in more details in [39].
Another consequence is that it fails to predict the peculiarities of occurring heterogeneous
dislocation microstructures as e.g. during dislocation cell structure formation. Thus, the
AH model has only a limited range of applicability.

1.3.2 Continuum Dislocation Dynamics models

Any version of a Continuum Dislocation Dynamics model is a non-local model which was
obtained by coarse-graining the geometrical properties and the motion of discrete dislocations
(the so-called kinematics of dislocations). As such, it is based on a set of continuous variables
and describes at least the flux of dislocation density by a set of transport equations. These
models have been developed for and so far mainly used in the domain of metal plasticity
[40-43, 31, 29].

The simplest model: straight parallel dislocation with the same line direction

In the particular case of straight dislocations of the same line direction, running along the y
direction of a Cartesian coordinate system and that move in a slip system with n = e,, the
continuum dislocation kinematics is described by a scalar evolution equation of dislocation
density p

Op = —0x (pv) ) (14)



where 0;(-) = 9(+)/0i. For a constant dislocation velocity v this would be a pure convection
equation. It is accompanied by the Orowan equation

Oy = pubd, (1.5)

where b is the magnitude of the Burgers vector and v is the plastic shear strain in the
respective slip system. 7, as an eigenstrain, serves as the connection to the elasticity theory,
similar as in the AH model. The resulting stresses reflect in the velocity function v as detailed
below.

The “Groma” model: straight parallel dislocations with two line directions

Among those who established a more general continuum model in the dislocation community
were van der Giessen and Needleman [44] as well as I. Groma [45, 28] who additionally
investigated how the interaction of dislocations can be described in terms of continuum
variables. The evolution equation Eq. 1.4 is then replaced by a set of evolution equations
for the total and signed GND densities as,

O Prot = —a:c(Pgnd v)
atpgnd = _az(ptot U)- (16)

Dislocation densities still describe only straight (edge) dislocation, but this model allows for
two different line orientations. The positive and negative dislocation densities, py and p_,
are then defined as the number of dislocations with positive or negative line direction per
averaging area. Thus, the total and GND density can be alternatively expressed as

Prot = P+ + P— (1.7)
Pand = P+ — P (1.8)

Fig. 1.1 shows a sketch of two different dislocation configurations highlighting the need for
two different density variables. In the Groma model, it is possible to represent a so-called
statistically stored dislocation (SSD) content inside an averaging volume, e.g., the volume
contains both an edge dislocation with positive line orientation and an edge dislocation with
negative line orientation. As a consequence, positive and negative densities can move past
each other without being annihilated, i.e., as if on different slip planes inside the averaging
volume.

The Kroner-Nye model for geometrically necessary dislocations

A different approach is based on the Kroner-Nye tensor [46] which is defined as

o = curl B (1.9)

pb

where B, is the plastic distortion. This representation is only valid if all dislocations in
an averaging volume share the same line direction I, which is why there is an alternative
formulation based on the GND density,

Q= pgal @ b. (1.10)
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Figure 1.1: Left: an averaging area containing two edge dislocations with opposite line
directions. Right: same averaging area containing two edge dislocations with the same line
direction. Both systems have the same total density but differ in the net GND content. 7
is the applied shear stress under which action a positive edge dislocations moves in positive
x direction (here: to the right), a negative edge moves towards the left, as indicated by the
small arrows.

If the coordinate system is aligned with the Burgers vector direction and the edge orienta-
tion, the individual coefficients of the Kroner-Nye tensor contain the edge and screw GND
contributions. One of the main differences to the above introduced two models is that here
dislocations can also be curved. A serious drawback of this quantity is that once the assump-
tion of GND content is violated, e.g., an averaging volume contains dislocations of opposite
line orientation, the dislocation content would be “annihilated”. This is nonphysical in par-
ticular in situations where averaging volumes are larger than the annihilation distance which
for metals has a typical order of magnitude of a few Burgers vectors. Combining the advan-
tage of the Groma model to handle SSD densities with opposite line orientations with the
ability of the Kroner-Nye model to handle arbitrarily curved lines leads to extended Contin-
uum Dislocation Dynamics models that can also work in truly three-dimensional situations.

Three-dimensional Continuum Dislocation Dynamics (CDD)

Representing dislocation microstructures as only straight edge dislocations in 2D or as GND
structures has many limitations and is therefore not suitable to be used as basis for 3D
models:

(i) Curved dislocations may bow out and thereby increase the line length contained in
the system, while straight dislocations can only translate [40]. However, the resulting
densities and the plastic slip is very different.

(ii) While only GNDs give rise to internal stresses [45, 32|, all dislocations need to be
considered because due to the motion of dislocations they can change their “character”,
e.g., a GND configuration may become a dipole configuration with a zero net GND
content.

(iii) Real dislocation microstructures are intrinsically three-dimensional and may include
many complex phenomena such as junctions or locks that can only be represented
in truly three-dimensional models. A detailed comparison of CDD models of varying
complexity can be found in [38].



To alleviate the above shortcomings, a more advanced continuum dislocation dynamics model
was introduced by Hochrainer, Sandfeld, Zaiser, and Gumbsch [29], which also can be gen-
eralized to three-dimensional systems. Similar to the above models, the dislocation velocity
drives the evolution of the dislocation microstructure in each slip system, which in the case
of Hochrainer’s CDD is represented by four field variables: the total density p; (which upon
volume integration gives the total line length inside the volume), a vector of “geometrically
necessary “ dislocation density @ = |[gs, 0], €.g. of screw (gs) and edge (g.) dislocations,
a curvature density ¢ (which upon volume integration gives the number of closed disloca-
tion loops as multiple of 27) and the plastic strain v. The temporal change is governed by
evolution equations (PDEs) which have the character of transport equations

Oipy = =V - (UQJ_> + gy

oo = —V(vpy)

g = -V - (—0QW + A® . V) (1.11)
and which are, for each slip system, completed by the Orowan equation for the rate of plastic

strain 7 = p;bv. Therein, a dot denotes the scalar product, o = [0e, —0s] is the 90° rotated
GND density vector. As stated in [36], we assume that,

QM — —ota/p (1.12)
A® = % [(14+ ), @1+ (1—0) 1, @1, ] (1.13)

where [,. is the unit vector perpendicular to I, and I, = g/|g| is the average line direction,
and W is approximated as

(lel/p)” (1 + (lel/p)")
5 .

U~

(1.14)

Hochrainer et al. [29] showed that it is possible to construct CDD formulations that addi-
tionally include higher order equations, which was analyzed for a number of formulations by
Monavari et al. [38]. However, Sandfeld and Po [47] showed, that already the above set of
equations is well able to represent many important features of DDD simulations.

The velocity v in the above equations needs to be specified in terms of a constitutive
equation through which elastic interactions enter the model,

o % (|ro| = 7y) for |mo| > 7y (1.15)
0 otherwise

where 7o = Text + Tine 1S the summation of the external shear stress (7.x,) and the long-
range (or ‘internal’) interaction stresses (7i,) which have to be obtained from the additional
solution of a dislocation eigenstrain problem [48, 49, 32]. 7y is as above the Taylor type yield
stress.



1.4 Example 1: Comparison of the Alexander-Haasen
and the Groma model

1.4.1 Governing equations

In the following we only want to study the difference due to the transport character of the
evolution equations. To make the two models comparable, we will use the same phenomeno-
logical source term for dislocation multiplication of the AH model for the Groma model. By
adding the right hand side of Eq.1.3 into the tranport equations (Eq.1.6) with the assumption
that pioy = pm, the evolution equations (Eq.1.6) then simply become

atptot = _ax(pgndv) + S
OiPgnd = —0z(Prot?) (1.16)

with

0

A
Te
S=K ( TH) Ptot|"U|, (117)

where v is again given by Eq. 1.1. The subscript “m” in the AH model indicates that
only mobile and no sessile dislocations are considered; the Groma model does not have to
differentiated between the two “types” of dislocations. However, since in our model no, e.g.
junction formation can take place, all dislocations could be considered as mobile.

1.4.2 Physical system and model setup

The considered physical system is a hexagonal 4H-SiC crystal as, e.g., grown by the physical
vapor transport (PVT) technique. The crystal is assumed to have h =45 mm and the radius
r =30mm, as shown by the gray shaded region in Fig. 1.2a. As a simplification we only
consider a two-dimensional cross-section as indicated by the blue rectangle in the same figure.
There, the basal plane which is characterized by a normal pointing into the z direction is
the only active slip system. As mechanical boundary conditions the crystal is fixed in the z
and z directions at point C; and only in z direction at point C5. For simplicity we do not
consider cooling, heating, or heat fluxes, only a time independent symmetrical temperature
field is prescribed during simulation. The resulting resolved shear stress distribution is
shown in Fig. 1.2. The same geometry setup is used for the AH model and the Groma
model. The simulations are based on the following material parameters and constants: b =
3.073x 1070 m, vy =85x 107 Pms™!, K =20x107°m™, Q =3.3eV, A\ =11, m = 2.8,
a = 0.425, and the Boltzmann constants is kg = 8.617 x 107°eV K~!. For the mechanical
problem the thermal expansion coefficient is temperature dependent [50] as shown in Fig. 1.3;
also the components of the stiffness tensor are temperature dependent [51]. In Voigt notation
they read for hexagonal SiC: The temperature dependent shear modulus is taken as the elastic
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Figure 1.2: (a) 2D crystal geometry and (b) initial distribution of the resolved shear stress
Tres &t t = Os in the plane indicated by the blue lines in (a).

constant Clyy.

Cn —0.025 486.6
Ca —0.011 CPa 101.3
Css —0.025 528.9
Cu —0.007 150.3

For the numerical solution of this time dependent, multiphysics problem which consists of
a mechanical part, a thermal part and the dislocations part, the finite element method is
used. For the numerical discretization, triangular elements with quadratic shape functions
were used for both the elastic and thermal problem; for the CDD dislocation problem we
used cubic shape functions so that all derivatives are approximated properly.
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Figure 1.3: Left: thermal expansion coefficient, right: prescribed temperature field



1.4.3 Results and discussion

The simulation results of the AH model and the Groma model are shown in Fig. 1.4 and
include dislocation density, resolved shear stress and plastic shear strain at a total time
of t = 3000s. There, the plots in the left column display the result from the AH model,
the middle column shows the results from the Groma model and the last column are the
corresponding results along the red, dashed line. The difference between these two model
is then easily observable with both the magnitude of dislocation density (Fig. 1.4a and
Fig. 1.4b) and the qualitative shape of the plots themselves (see Fig. 1.4c). The AH model
shows a growing patch of increasing dislocation density (see Fig. 1.4a ) where the resolved
shear stress is highest while the Groma model exhibits smaller patches of dislocation density
(see Fig. 1.4b) at the surface (z ~30mm, label C) and around the crystal axis (z =0mm,
label A). The maximum dislocation density values of the Groma model are observed to be
close to the surface with values of roughly 2500 cm~2 and a value of 600 cm~2 around the
axis, while the AH model has a maximum value of approximately 1500cm~2. In a way,
the two models behave opposite to each other. The difference between the two models is
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Figure 1.4: Comparison between AH model and Groma model including a source term: the
top row shows the density, the middle row the resolved shear stress and the bottom row
depicts the plastic strain. The left column are results for both models plotted along the red,
dashed lines.

also obvious in the results of the resolved shear stress. Fig. 1.4d and Fig. 1.4e shows the
resolved shear stress T, field for the basal slip system with respect to the dislocation density
distribution in Fig. 1.4a and Fig. 1.4b. In the AH model, p,, will initially increase at the
four stress hot spot (see Fig. 1.2b) and then decrease as a consequence of plastic relaxation
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which can be observed in the shape change (compared Fig. 1.2b and Fig. 1.4d); it reaches
the state shown in Fig. 1.4d. As a result of this “stress transfer”, a substantial increase in
dislocation density by nucleation of new dislocations takes place in regions where originally
the initial stress was low. As opposed to that, in the Groma model, dislocation accumulations
occur close to the surface and close to the crystal axis. The reason for this behavior is that
dislocations are nucleated where the stress is highest, but then move away, driven by shear
stresses. They accumulated where the shear stress is low (see Fig. 1.4e and Fig. 1.4f) and
form quasi-stationary pile-up structures. It ultimately leads to a depleted zone where in the
AH model the density is highest (see label B in Fig. 1.4c).

Is this consistent with the results for the plastic shear? For the AH model, plastic strain
co-evolves with the nucleation of dislocation density and therefore, as expected, has roughly
the same shape as the dislocation density (see Fig. 1.4g and Fig. 1.4i). The Groma model
behaves quite differently as the AH model. In the Groma model, the plastic strain is caused
by dislocation motion and is high in the regions which were swept by dislocation (see Fig. 1.4h
and Fig. 1.4i). These are, for this example, exactly the regions where no dislocations are
present any more. This is the expected behavior which is consistent with basic dislocation
dynamics. Thus, the comparison of the two different simulations revealed that the flow
of dislocation in the crystal during growth can not be neglected, as it is done in the AH
model. The dislocation motions controls the distribution of dislocation inside the crystal
and makes it possible that dislocations can move even to places where originally the stress
was low, such as the surfaces or the central region. However, the Groma model has some
limitation, as already above stated: e.g., the source term is just an approximation which
cannot capture the whole mechanisms of dislocation nucleation; furthermore, dislocations
are only assumes to be straight lines. And last but not least, the simulation only considers
basal plane dislocation while there are many more types of dislocations in reality that also
need to be taken into account.

1.5 Example 2: Dislocation flow between veins

1.5.1 A brief introduction to dislocation patterning and the simil-
itude principle

Under certain conditions it is observed that dislocations tend to form heterogeneous but reg-
ular structures, some of which are termed “dislocations patterns”. They are observed both
in metals as well as in semiconductors. The micrographs in Fig. 1.5 show examples of such
structures. These dislocation patterns can occur, e.g., as approximately periodic disloca-
tion agglomerations or sharply distinguishable cell (e.g., Fig. 1.5¢) or “labyrinth” structures
(Fig. 1.5h). The common feature is that all of these structures are characterized by clusters
of very high dislocation density alternating with regions of very low (or zero) density. These
dislocation formations are usually ‘metastable’ structures which mostly persist upon unload-
ing. One of the remarkable features is that the cell sizes A — regardless material, loading
condition or temperature — are always related to the applied stress 7.y through the ‘law of
similitude’ [52, 53] by A = DaGb/ 7wk, where usually the constant D = 10...20 and G is
the shear modulus, and a =~ 0.3 is the non-dimensional coefficient relating flow stress and
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Figure 1.5: Dislocation organize themselves into patterns as e.g. cell structure, independent
of the material or loading condition(left). The cell size is related to the applied stress through
the ’similitude relation’ (right). Images taken with permission from Rudolph [4].

dislocation density p in the Taylor relationship 7 = aGb,/p. This has been known for plasti-
cally deformed metals for about half a century [54] but is also observed in semiconductors as
pointed out more recently by Rudolph [4, 5]: e.g. in GaAs dislocations arrange themselves
in experimentally observable cellular structures of diameter in between 100...1000 pm. Al-
though the regular (sometimes fractal) appearance is visually interesting, these dislocation
structures deteriorate the electronic and mechanical properties of semiconductors, and their
formation needs to be prevented as far as possible. Hence, understanding the mechanisms
leading to the occurrence of patterns is crucial for being able to prevent such structures.
Rudolph [4] suggested to relate the origin of this phenomenon to the same mechanisms as
in the case of metals (where cells form roughly in the 1 pum to 10 um size range, see Fig. 1.5
(left)). The different cell size regimes, i.e. mm-range for semiconductors and pm-range for
metals, is related to the very different dislocation densities at saturation which result in dif-
ferent stresses due to the Taylor relationship (Fig. 1.5 (right)). In the case of SiC dislocation
cell structures have also been reported in the past for materials exhibiting dislocation den-
sities in the mid 10 cm=2 to low 10° cm~2 range, however, basically no attention has been
paid to describe the dislocation microstructure in terms of such networks or cells. At lower
dislocation densities in the mid 1 x 10% cm~2 range as it is typical for best commercial SiC
wafer materials, the cell structure is difficult to visualize and mainly occurs in defective areas
where dislocation bundles occur. So far, no detailed theoretical concept or computational
model of dislocation cell formation in semiconductor materials exists. There is, however, a
great need to explain and therefore to be able to take countermeasures against the formation
of dislocation entanglements, which also has been recognized in the literature: for instance,
the 2014 edition of the book Eztended Defects in Semiconductors by Holt and Yacobi [55]
strongly emphasizes within the last sentence of the section Major Persisting Issues “... The
need for a theoretical framework for this phenomenon [cellular dislocation structures] ...”.
Encouraged by this general viewpoint, we take it as an worthwhile task to transfer modeling
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of dislocation patterning from metals to the semiconductor case.

1.5.2 Physical system and model setup

Approaches that are able to predict dislocations patterning are — even in the modeling com-
munity for dislocation mediated metal plasticity simulation — very scarce: even discrete
simulation methods are due to the computational cost generally not able to predict the evo-
lution of dislocation patterns. This is why in the following a CDD model will be used to
demonstrate some of the most important mechanisms involved during formation of disloca-
tion patterns. The first stage, i.e., the formation of such stable dislocation agglomerations
has already been investigated in [34] and for a different formulation also in [56] where it was
shown that the above CDD model is indeed able to simulate this.

As a model system we now assume that already a stable wall-like structure (e.g., a cell
wall or the wall of a persistent slip band) exists. A dislocation dynamics model must then
be able to represent the motion of dislocations between these constraining walls, similar
to the situation investigated in [38]. The experimental results from Mughrabi [57] shown in
Fig. 1.6a, illustrate the walls structure in a so-called persistent slip band (PSB) which consist
of dipolar edge dislocation configurations. The dislocations gliding in the channels between
the walls have mainly screw orientation. In cell structures, the cell walls may have a different
dislocation content, however, the ability to represent bowing out of dislocations and glide in
between the walls is equally important. In what follows we will now demonstrate that the
CDD model is able to represent the bowing-out/gliding mechanism, which is a prerequisite
for predicting the formation for cell or wall structures.

veins

dislocation, radius rg

Figure 1.6: a) TEM micrograph showing walls of PSBs (dark) [57] and gliding of screw
segments between walls; b) Schematic of dislocation vein structure made up of extended
edge dipoles and glide screw dislocation of radius ry. The channel width is w = L,.
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1.5.3 Geometry and initial values

The geometry is chosen to be rectangular with the channel width L, and the channel length
L, (see Table 1.1 for all numerical values and used material parameters). The system is

Table 1.1: Parameters for dislocation flow between veins.

Parameter Value
System size Ly 1x10~°m
System height L, 2x107°m
Loops radius 7 2x107%m
Standard deviation s 7x107%m
Burgers vector modulus b 0.256 x 10™? m
Drag coefficient B 5x 1078 Pa-s
Shear modulus G 128 x 10° Pa,

periodic in y direction, i.e., dislocations exiting the system at the top will flow back in at
the bottom. In horizontal direction the boundaries are impenetrable for dislocations, which
is modeled by a horizontal velocity profile that is zero directly at the boundaries, constant
inside the channel with a value of vy, and has a smooth transition in between:

2 2
UV = g (1 _|_e—(x+Lx/2)5 — 1) (1 _|_e—(Lx/2—I)5 — 1) 5 (119)

with vg = 0.4ms™!, 8 = 0.004. Within the present work we ignore all dislocation interactions
and concentrate exclusively on the ‘kinematics’, that is, how curved and connected lines move
and evolve in space and time without interactions.

In order to consistently representing a system of curved and connected lines in a coarse-
grained continuum manner, we obtain dislocation density distributions (such as p;) by
first defining a distribution of a number of mathematical dislocation loops. This is fol-
lowed by convolution along the loops’ lines with a Gaussian normal distribution function

(3\/%)71 exp (—&?/2s%), where s is the width of the distribution and £ is the distance per-
pendicular to the loop. This effectively “smears out” the line prependicular to it. By
multiplication of the dislocation density with the normalized radial unit vector or division
by its radius, r, we can determine the dislocation density vector g or the curvature den-
sity ¢ = pi/r, respectively. CDD initial values are obtained by summing up the individual
fields. Initial values with two dislocation loops and 50 dislocation loops for our simulation
are shown in Fig. 1.7 and Fig. 1.8. The curvature, i. e., 1/radius of a line is obtained in
a postprocessing step from k = ¢/p; it is not defined in regions where the density is zero
(compare the right most plot in Fig. 1.7). More details on the process of creating consistent
initial values can be found in [33, 34].

1.5.4 Results and discussion

Because of the zero velocity in the walls and the smooth transition from v = 0 to a constant
velocity vy further away from the wall, the velocity field acts such that dislocations are
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Figure 1.7: Initial CDD field values for two quasi-discrete dislocation loops. From left to
right: total density, edge GND density component, curvature density, plastic slip, curvature.
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Figure 1.8: Initial CDD field values for a distribution of 50 dislocation loops. From left to
right: total density, edge GND density component, curvature density, plastic slip, curvature.

first slowed down on their way towards the walls and eventually freeze in their motion so
that they cannot enter the walls. Fig. 1.9 and Fig. 1.10 present the relations among the
four CDD variables during dislocation evolution. The two-loop system is not fundamentally
different from the 50-loop system but makes it easier to understand the meaning of the
different fields. Initially, one can observe free loop expansion inside the domain because of
the constant velocity. Since we neglect interaction between dislocations and assume that they
or on different but near-by slip planes in their respective averaging volumes, they will pass
through each other during expansion. Later, at time ¢ = 0.01, we can observe that dislocation
will reach the left and right boundaries and begin to a pile-up at these walls while they still
expand in the vertical direction (see figure 1.9 and figure 1.10). An interesting feature is
the formation of pile-ups of bent lines at walls: when expanding dislocation loops touch the
left and right boundaries, they bend and adjust to the shape of the walls. Because of that,
the values of curvature density ¢ at these areas are larger than inside area. Line pile-ups of
dislocation density can be seen in the left and right boundaries and even clearer as a banded
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structure at time ¢t = 0.025. The dislocation density p has a high value in the vicinity of
the walls because of the density from piled-up dislocations. The threading edge segments,
i.e., density with approximately horizontal orientation, are segments from expanding loops.
Therefore, they become more straight, which also shows in their reduced curvature (last
column of Fig. 1.9 and Fig. 1.10). Investigating the curvature k = ¢/p, because of the
impenetrable walls we observe that the screw segments are straight with the curvature value
k = 0 at walls and we find a non-zero curvature shortly before the surface where dislocations
need to bend strongly.
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Figure 1.9: Two mobile dislocation loops expansion in the channel.

The plastic slip v — which is the pendant of the plastic strain on the level of the individual
slip plane — shows clearly that it is proportional to the slipped area. Where two loops overlap,
the value of v is doubled. The system with 50 loops, on the other hand, shows nearly
homogeneous plasticity in the inside of the channel and a larger accumulation of plastic slip
directly at the boundaries. This is due to the fact that the high curvature density scales is
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Figure 1.10: Fifty mobile dislocation loops expansion in the channel.

responsible for additional line length production.

How do these microscopic field variables relate to average quantities on the macroscopic
system scale? Fig. 1.11 shows the total dislocation line length [ = [ 4 pdA versus time. To
validate our model results we construct two extreme cases:

(i) There is only free loops expansion as if no boundaries and interactions are present.
This results in a linear line length increase L = Ng27 (1o + vt) (with Ny the number of
loops and v the velocity) and is shown as the tangent on the left of the plot in Fig. 1.11.

(ii) Loops have a very large radius such that the threading edge segments can be considered
as straight. Then these segements move and at the same time deposit straight screw
segments at the boundaries, as if it were a rectangular loop. This yields a line length
of L = Ny (mw + 4vt + 2w) with w the width of the channel. This is shown as the
tangent on the right of the plot in Fig. 1.11.
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Figure 1.11: Total line length vs time. The two tangents denote the line length assuming (i)
only free loop exapansion without any boundaries and (ii) only straight edge segments that
are connected by straight screw segments as in a rectangular loop.

One can observe that the simulation reproduces the correct rate of line length at the begin-
ning of the simulation and towards the end; in between is a larger transition region. This
clearly demonstrates that the complex interplay between dislocation loop expansion, dislo-
cation motion, line bending and deposition at a boundary can all be predicted by this CDD
model. Additionally, without dislocation interactions, the system is just a superposition of
individual loops, even in cases where the individual loops can no longer be distinguished.
Using just the Groma model could not work because the line length production due to the
threading edge dislocations can not be represented and the total line length in the system
would stay constant. How would the AH model have performed? A direct comparison is
difficult because the CDD model can operate even without stresses and just by prescribing a
velocity. Assuming a constant shear stress, the AH model would not be able to represent the
deposition of density at the boundary, similar to what was shown in Fig. 1.4. Furthermore,
it would not be possible to interpret the resulting density or plastic strain configuration in
terms of geometrical properties of dislocations lines. Since dislocations are the carrier of plas-
tic deformation, we see the lag of interpretability as one of the big drawbacks of any purely
phenomenological continuum model — irrespective of the quality of the overall predictions.

1.6 Summary and Conclusion

An overview over current state of the art modeling techniques for predicting defects in semi-
conductors has been presented. Putting a focus on systems of dislocations, it was discussed
that it might be very lucrative to apply simulations methods from the metal plasticity do-
main to the domain of semiconductors. In this context, a number of state of the art methods
for predicting the dislocation dynamics in a continuum frame work were introduced and crit-
ically discussed. In particular the comparison with one of the most established simulation
model used in the semiconductor domain, the Alexander-Haasen model, demonstrated that
it is very important to be aware of the limitations and the range of applicability of a model:
the Alexander-Haasen model is not able to predict fluxes of dislocations, which in many
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applications might be a strong limitation.

Discussing modeling approaches in the context of dislocation pattern formation, we
demonstrated that the introduced CDD model is able to represent many important dis-
location features that also can be clearly interpreted in terms of geometrical features of
curved lines. Nonetheless, the current CDD theory still has not been applied to general
system in three dimensions. This will require detailed work on extracting data from DDD
and MD simulations that can then be used as input for dislocation interaction formulations.
Nonetheless, a continuum model which operates on length and time scales comparable to
experimental ones also might be very well able to act as a link between theory, modeling
and experiment. In particular experimental data is, of course, the ultimate benchmark for
any model. Therefore one might by tempted to say that a good simulation model need not
exactly reproduce experimental results; rather, a good simulation model is a model that can
be easily interpreted as well as parameterized and directly validated by experiments, both
on the microscopic and macroscopic scale.
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