001     907439
005     20240109115102.0
024 7 _ |a 10.1038/s44160-022-00038-z
|2 doi
024 7 _ |a 2128/31095
|2 Handle
024 7 _ |a altmetric:124644004
|2 altmetric
024 7 _ |a WOS:001126670400011
|2 WOS
037 _ _ |a FZJ-2022-02037
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Guo, Shasha
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Direct growth of single-metal-atom chains
260 _ _ |a London
|c 2022
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651482161_16137
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single-metal-atom chains (SMACs), as the smallest one-dimensional structure, have intriguing physical and chemical properties. Although several SMACs have been realized so far, their controllable fabrication remains challenging due to the need to arrange single atoms in an atomically precise manner. Here we develop a chemical vapour co-deposition method to construct a wafer-scale network of platinum SMACs in atom-thin films. The obtained atomic chains possess an average length of up to ~17 nm and a high density of over 10 wt%. Interestingly, as a consequence of the electronic delocalization of platinum atoms along the chain, this atomically coherent one-dimensional channel delivers a metallic behaviour, as revealed by electronic measurements, first-principles calculations and complex network modelling. Our strategy is potentially extendable to other transition metals such as cobalt, enriching the toolbox for manufacturing SMACs and paving the way for the fundamental study of one-dimensional systems and the development of devices comprising monoatomic chains.
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|x 0
|f POF IV
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|x 1
|f POF IV
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 1
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 2
700 1 _ |a Fu, Jiecai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Peikun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhu, Chao
|0 0000-0001-6383-3665
|b 3
700 1 _ |a Yao, Heming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Xu, Manzhang
|0 0000-0001-6752-5299
|b 5
700 1 _ |a An, Boxing
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wang, Xingli
|0 0000-0003-2411-7804
|b 7
700 1 _ |a Tang, Bijun
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Deng, Yan
|0 P:(DE-Juel1)190782
|b 9
700 1 _ |a Salim, Teddy
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 11
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 12
|u fzj
700 1 _ |a Xu, Mingquan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zhou, Wu
|0 0000-0002-6803-1095
|b 14
700 1 _ |a Tay, Beng Kang
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Zhu, Chao
|0 P:(DE-HGF)0
|b 16
700 1 _ |a He, Yanchao
|0 0000-0002-3227-0780
|b 17
700 1 _ |a Hofmann, Mario
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Hsieh, Ya-Ping
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Guo, Wanlin
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Ng, Michael
|0 0000-0001-6833-5227
|b 21
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 22
|e Corresponding author
700 1 _ |a Zhang, Zhuhua
|0 0000-0001-6406-0959
|b 23
|e Corresponding author
700 1 _ |a He, Yongmin
|0 0000-0002-9347-930X
|b 24
|e Corresponding author
700 1 _ |a Liu, Zheng
|0 0000-0002-8825-7198
|b 25
|e Corresponding author
773 _ _ |a 10.1038/s44160-022-00038-z
|g Vol. 1, no. 3, p. 245 - 253
|0 PERI:(DE-600)3105490-0
|n 3
|p 245 - 253
|t Nature Synthesis
|v 1
|y 2022
|x 2731-0582
856 4 _ |u https://juser.fz-juelich.de/record/907439/files/s44160-022-00038-z-1.pdf
856 4 _ |y Published on 2022-03-14. Available in OpenAccess from 2022-09-14.
|u https://juser.fz-juelich.de/record/907439/files/Direct%20growth.pdf
909 C O |o oai:juser.fz-juelich.de:907439
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)145710
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 11
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)130736
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 0000-0001-6406-0959
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 0000-0002-9347-930X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 25
|6 0000-0002-8825-7198
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 1
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21