000907441 001__ 907441
000907441 005__ 20230123110616.0
000907441 0247_ $$2doi$$a10.1016/j.ultramic.2022.113510
000907441 0247_ $$2ISSN$$a0304-3991
000907441 0247_ $$2ISSN$$a1879-2723
000907441 0247_ $$2Handle$$a2128/31089
000907441 0247_ $$2altmetric$$aaltmetric:124980366
000907441 0247_ $$2pmid$$apmid:35367900
000907441 0247_ $$2WOS$$aWOS:000790826100002
000907441 037__ $$aFZJ-2022-02039
000907441 041__ $$aEnglish
000907441 082__ $$a570
000907441 1001_ $$00000-0001-5049-4000$$aDickerson, Joshua L.$$b0$$eFirst author
000907441 245__ $$aImaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
000907441 260__ $$aAmsterdam$$bElsevier Science$$c2022
000907441 3367_ $$2DRIVER$$aarticle
000907441 3367_ $$2DataCite$$aOutput Types/Journal article
000907441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651214443_5952
000907441 3367_ $$2BibTeX$$aARTICLE
000907441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907441 3367_ $$00$$2EndNote$$aJournal Article
000907441 520__ $$aWe investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron cryomicrographs of proteins within a cell using chromatic aberration () correction. We show that inelastically scattered electrons lose a quantifiable amount of spatial coherence as they transit the specimen, yet can be used to enhance the signal from thick biological specimens (in the 1000 to 5000 Å range) provided they are imaged close to focus with an achromatic lens. This loss of information quantified here, which we call “specimen induced decoherence”, is a fundamental limit on imaging biological molecules in situ. We further show that with foreseeable advances in transmission electron microscope technology, it should be possible to directly locate and uniquely identify sub-100 kDa proteins without the need for labels, in a vitrified specimen taken from a cell.
000907441 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907441 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907441 7001_ $$0P:(DE-Juel1)167381$$aLu, Penghan$$b1$$ufzj
000907441 7001_ $$0P:(DE-HGF)0$$aHristov, Dilyan$$b2
000907441 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b3$$ufzj
000907441 7001_ $$00000-0002-4442-744X$$aRusso, Christopher J.$$b4$$eCorresponding author
000907441 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2022.113510$$gVol. 237, p. 113510 -$$p113510 -$$tUltramicroscopy$$v237$$x0304-3991$$y2022
000907441 8564_ $$uhttps://juser.fz-juelich.de/record/907441/files/1-s2.0-S0304399122000456-main.pdf$$yOpenAccess
000907441 8564_ $$uhttps://juser.fz-juelich.de/record/907441/files/inelasticMS_rev1.0.pdf$$yOpenAccess
000907441 909CO $$ooai:juser.fz-juelich.de:907441$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907441 9101_ $$0I:(DE-HGF)0$$60000-0001-5049-4000$$aExternal Institute$$b0$$kExtern
000907441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b1$$kFZJ
000907441 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000907441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
000907441 9101_ $$0I:(DE-HGF)0$$60000-0002-4442-744X$$aExternal Institute$$b4$$kExtern
000907441 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907441 9141_ $$y2022
000907441 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000907441 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000907441 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000907441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907441 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907441 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-15$$wger
000907441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2021$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000907441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000907441 920__ $$lyes
000907441 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907441 980__ $$ajournal
000907441 980__ $$aVDB
000907441 980__ $$aUNRESTRICTED
000907441 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907441 9801_ $$aFullTexts