001     907450
005     20230123110616.0
024 7 _ |a 10.1016/j.cej.2022.136129
|2 doi
024 7 _ |a 1385-8947
|2 ISSN
024 7 _ |a 1873-3212
|2 ISSN
024 7 _ |a 2128/31091
|2 Handle
024 7 _ |a altmetric:126418937
|2 altmetric
024 7 _ |a WOS:000799842600004
|2 WOS
037 _ _ |a FZJ-2022-02042
041 _ _ |a English
100 1 _ |a Liang, Zhifu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A novel π-d conjugated cobalt tetraaza[14]annulene based atomically dispersed electrocatalyst for efficient CO2 reduction
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651234681_7279
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tetraaza[14]annulenes (TAA) are synthetic macrocycles which are analogue to porphyrins. However, there are almost no reports about the synthesis of polymers based on TAA and neither on their use as electrocatalysts. The study of new catalysts to promote an efficient electrochemical conversion of carbon dioxide to valuable chemicals is a promising approach to relieve the pressure of carbon emissions and realize the carbon cycle. Herein, we first report the synthesis of a novel tetraaza[14]annulene (TAA) based organic polymeric metal complex (PMC) by a non-template method. This PMC is used as ligand to construct a π-d conjugated cobalt coordination polymer (Poly-TAA-Co) with CoN4 structure which is supported on multi-wall carbon nanotubes (CNTs) to work as an atomically dispersed efficient electrocatalyst for the CO2 reduction reaction (CO2RR). The resulting catalyst (Poly-TAA-Co-CNT) exhibits excellent performance, with a 90% CO faradaic efficiency, a low overpotential (390 mV) and good stability in 0.5 M KHCO3 aqueous solution. Density functional theory calculations confirmed that the cobalt tetra[14]annulene is an excellent active site for electrocatalytic CO2RR. This work not only inspires the design of novel TAA based macromolecules, but also paves the way to the development and application of new molecular-based catalysts for electrocatalytic CO2RR.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Ting
|0 P:(DE-Juel1)168161
|b 1
700 1 _ |a Cao, Pengfei
|0 P:(DE-Juel1)180314
|b 2
|u fzj
700 1 _ |a Yoshida, Takefumi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tang, Weiqiang
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Wang, Xiang
|0 P:(DE-Juel1)186739
|b 5
700 1 _ |a Zuo, Yong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tang, Pengyi
|0 P:(DE-Juel1)179016
|b 7
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 8
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 9
|u fzj
700 1 _ |a Morante, Joan Ramon
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Cabot, Andreu
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Yamashita, Masahiro
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Arbiol, Jordi
|0 0000-0002-0695-1726
|b 13
|e Corresponding author
773 _ _ |a 10.1016/j.cej.2022.136129
|g Vol. 442, p. 136129 -
|0 PERI:(DE-600)2012137-4
|p 136129 -
|t The chemical engineering journal
|v 442
|y 2022
|x 1385-8947
856 4 _ |u https://juser.fz-juelich.de/record/907450/files/1-s2.0-S1385894722016278-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907450
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG J : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CHEM ENG J : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21