001     907453
005     20230522125346.0
024 7 _ |a 10.1038/s41929-022-00753-y
|2 doi
024 7 _ |a 2128/31160
|2 Handle
024 7 _ |a altmetric:124378897
|2 altmetric
024 7 _ |a WOS:000766418700001
|2 WOS
037 _ _ |a FZJ-2022-02045
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a He, Yongmin
|0 0000-0002-9347-930X
|b 0
|e Corresponding author
245 _ _ |a Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production
260 _ _ |a [London]
|c 2022
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652365047_31066
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rational design of noble metal catalysts with the potential to leverage efficiency is vital for industrial applications. Such an ultimate atom-utilization efficiency can be achieved when all noble metal atoms exclusively contribute to catalysis. Here, we demonstrate the fabrication of a wafer-size amorphous PtSex film on a SiO2 substate via a low-temperature amorphization strategy, which offers single-atom-layer Pt catalysts with high atom-utilization efficiency (~26 wt%). This amorphous PtSex (1.2 < x < 1.3) behaves as a fully activated surface, accessible to catalytic reactions, and features a nearly 100% current density relative to a pure Pt surface and reliable production of sustained high-flux hydrogen over a 2 inch wafer as a proof-of-concept. Furthermore, an electrolyser is demonstrated to generate a high current density of 1,000 mA cm−2. Such an amorphization strategy is potentially extendable to other noble metals, including the Pd, Ir, Os, Rh and Ru elements, demonstrating the universality of single-atom-layer catalysts.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Liu, Liren
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhu, Chao
|0 0000-0001-6383-3665
|b 2
700 1 _ |a Guo, Shasha
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Golani, Prafful
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Koo, Bonhyeong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tang, Pengyi
|0 P:(DE-Juel1)179016
|b 6
700 1 _ |a Zhao, Zhiqiang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Xu, Manzhang
|0 0000-0001-6752-5299
|b 8
700 1 _ |a Zhu, Chao
|0 0000-0002-1589-855X
|b 9
700 1 _ |a Yu, Peng
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zhou, Xin
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gao, Caitian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Wang, Xuewen
|0 0000-0002-9689-6678
|b 13
700 1 _ |a Shi, Zude
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Zheng, Lu
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Yang, Jiefu
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Shin, Byungha
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Arbiol, Jordi
|0 0000-0002-0695-1726
|b 18
700 1 _ |a Duan, Huigao
|0 0000-0001-9144-2864
|b 19
700 1 _ |a Du, Yonghua
|0 0000-0003-2655-045X
|b 20
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 21
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 22
700 1 _ |a Guo, Wanlin
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Wang, Qin
|0 P:(DE-Juel1)190396
|b 24
|u fzj
700 1 _ |a Zhang, Zhuhua
|0 0000-0001-6406-0959
|b 25
|e Corresponding author
700 1 _ |a Liu, Zheng
|0 0000-0002-8825-7198
|b 26
|e Corresponding author
773 _ _ |a 10.1038/s41929-022-00753-y
|g Vol. 5, no. 3, p. 212 - 221
|0 PERI:(DE-600)2916779-6
|n 3
|p 212 - 221
|t Nature catalysis
|v 5
|y 2022
|x 2520-1158
856 4 _ |u https://juser.fz-juelich.de/record/907453/files/s41929-022-00753-y-2.pdf
856 4 _ |y Published on 2022-03-10. Available in OpenAccess from 2022-09-10.
|u https://juser.fz-juelich.de/record/907453/files/Amorphizing%20noble%20metal%20chalcogenide%20catalysts%202022.pdf
909 C O |o oai:juser.fz-juelich.de:907453
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)190396
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CATAL : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT CATAL : 2021
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21