Hauptseite > Publikationsdatenbank > A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping‐Diffusion‐Catalysis in Lithium–Sulfur Batteries > print |
001 | 907456 | ||
005 | 20230522125346.0 | ||
024 | 7 | _ | |a 10.1002/adma.202108835 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a 2128/31156 |2 Handle |
024 | 7 | _ | |a altmetric:121245115 |2 altmetric |
024 | 7 | _ | |a WOS:000747786300001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02048 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Yang, Dawei |0 0000-0002-3842-8286 |b 0 |
245 | _ | _ | |a A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping‐Diffusion‐Catalysis in Lithium–Sulfur Batteries |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1652344664_31066 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium–sulfur batteries (LSBs). Herein, a 1D π–d conjugated metal–organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2S oxidation during the charging process. In addition, the delocalization of electrons in the π–d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g−1 at 8 C, and a high areal capacity of 6.63 mAh cm−2 under raised sulfur loading of 6.7 mg cm−2. The strategies and advantages here demonstrated can be extended to a broader range of π–d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Liang, Zhifu |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tang, Pengyi |0 P:(DE-Juel1)179016 |b 2 |
700 | 1 | _ | |a Zhang, Chaoqi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tang, Mingxue |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Li, Qizhen |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Biendicho, Jordi Jacas |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Li, Junshan |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 8 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 9 |u fzj |
700 | 1 | _ | |a Xu, Ming |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
700 | 1 | _ | |a Llorca, Jordi |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Arbiol, Jordi |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
700 | 1 | _ | |a Morante, Joan Ramon |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Chou, Shu-Lei |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
700 | 1 | _ | |a Cabot, Andreu |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1002/adma.202108835 |g Vol. 34, no. 10, p. 2108835 - |0 PERI:(DE-600)1474949-X |n 10 |p 2108835 - |t Advanced materials |v 34 |y 2022 |x 0935-9648 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907456/files/Advanced%20Materials%20-%202022%20-%20Yang%20-%20A%20High%20Conductivity%201D%20d%20Conjugated%20Metal%20Organic%20Framework%20with%20Efficient%20Polysulfide-3.pdf |
856 | 4 | _ | |y Published on 2022-03-10. Available in OpenAccess from 2023-03-10. |u https://juser.fz-juelich.de/record/907456/files/A%20High%20Conductivity-revised_all.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:907456 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-04 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-16 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-16 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2021 |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b ADV MATER : 2021 |d 2022-11-16 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|