001     907456
005     20230522125346.0
024 7 _ |a 10.1002/adma.202108835
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/31156
|2 Handle
024 7 _ |a altmetric:121245115
|2 altmetric
024 7 _ |a WOS:000747786300001
|2 WOS
037 _ _ |a FZJ-2022-02048
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Yang, Dawei
|0 0000-0002-3842-8286
|b 0
245 _ _ |a A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping‐Diffusion‐Catalysis in Lithium–Sulfur Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652344664_31066
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium–sulfur batteries (LSBs). Herein, a 1D π–d conjugated metal–organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2S oxidation during the charging process. In addition, the delocalization of electrons in the π–d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g−1 at 8 C, and a high areal capacity of 6.63 mAh cm−2 under raised sulfur loading of 6.7 mg cm−2. The strategies and advantages here demonstrated can be extended to a broader range of π–d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liang, Zhifu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tang, Pengyi
|0 P:(DE-Juel1)179016
|b 2
700 1 _ |a Zhang, Chaoqi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tang, Mingxue
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Qizhen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Biendicho, Jordi Jacas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Junshan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 8
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 9
|u fzj
700 1 _ |a Xu, Ming
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Llorca, Jordi
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Arbiol, Jordi
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Morante, Joan Ramon
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Chou, Shu-Lei
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
700 1 _ |a Cabot, Andreu
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1002/adma.202108835
|g Vol. 34, no. 10, p. 2108835 -
|0 PERI:(DE-600)1474949-X
|n 10
|p 2108835 -
|t Advanced materials
|v 34
|y 2022
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/907456/files/Advanced%20Materials%20-%202022%20-%20Yang%20-%20A%20High%20Conductivity%201D%20d%20Conjugated%20Metal%20Organic%20Framework%20with%20Efficient%20Polysulfide-3.pdf
856 4 _ |y Published on 2022-03-10. Available in OpenAccess from 2023-03-10.
|u https://juser.fz-juelich.de/record/907456/files/A%20High%20Conductivity-revised_all.pdf
909 C O |o oai:juser.fz-juelich.de:907456
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ADV MATER : 2021
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21