000907457 001__ 907457
000907457 005__ 20240712112829.0
000907457 0247_ $$2doi$$a10.1039/D1CC07172F
000907457 0247_ $$2ISSN$$a0009-241X
000907457 0247_ $$2ISSN$$a0022-4936
000907457 0247_ $$2ISSN$$a1359-7345
000907457 0247_ $$2ISSN$$a1364-548X
000907457 0247_ $$2ISSN$$a2050-5620
000907457 0247_ $$2ISSN$$a2050-5639
000907457 0247_ $$2Handle$$a2128/31109
000907457 0247_ $$2altmetric$$aaltmetric:121852518
000907457 0247_ $$2WOS$$aWOS:000751912700001
000907457 037__ $$aFZJ-2022-02049
000907457 041__ $$aEnglish
000907457 082__ $$a540
000907457 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author
000907457 245__ $$aOperando transmission electron microscopy of battery cycling: thickness dependent breaking of TiO 2 coating on Si/SiO 2 nanoparticles
000907457 260__ $$aCambridge$$bSoc.$$c2022
000907457 3367_ $$2DRIVER$$aarticle
000907457 3367_ $$2DataCite$$aOutput Types/Journal article
000907457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682598343_3816
000907457 3367_ $$2BibTeX$$aARTICLE
000907457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907457 3367_ $$00$$2EndNote$$aJournal Article
000907457 520__ $$aConformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid–electrolyte interface formation. Here, we use operando transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities.
000907457 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907457 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000907457 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x2
000907457 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x3
000907457 588__ $$aDataset connected to DataCite
000907457 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b1
000907457 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b2
000907457 7001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b3
000907457 7001_ $$0P:(DE-HGF)0$$aArszelewska, Violetta$$b4
000907457 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
000907457 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6
000907457 7001_ $$0P:(DE-HGF)0$$aKelder, Erik M.$$b7
000907457 7001_ $$00000-0003-3851-1044$$aWagemaker, Marnix$$b8
000907457 7001_ $$0P:(DE-HGF)0$$aGeorge, Chandramohan$$b9
000907457 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b10
000907457 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b11
000907457 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b12
000907457 773__ $$0PERI:(DE-600)1472881-3$$a10.1039/D1CC07172F$$gVol. 58, no. 19, p. 3130 - 3133$$n19$$p3130 - 3133$$tChemical communications$$v58$$x0009-241X$$y2022
000907457 8564_ $$uhttps://juser.fz-juelich.de/record/907457/files/Invoice_INV_017804.pdf
000907457 8564_ $$uhttps://juser.fz-juelich.de/record/907457/files/operando%20transmission.pdf$$yOpenAccess
000907457 8767_ $$8INV_017804$$92022-03-23$$aBelegnr. 1200180110$$d2022-05-02$$eCover$$jZahlung erfolgt$$zGBP 1000,-; DEB01240 nicht bebuchbar; Projektnummer muss richtig sein, erneut geschickt 2.5.22
000907457 8767_ $$d2022-12-27$$eHybrid-OA$$jPublish and Read$$zRSC
000907457 909CO $$ooai:juser.fz-juelich.de:907457$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b2$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b6$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b10$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b11$$kFZJ
000907457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b12$$kFZJ
000907457 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907457 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000907457 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
000907457 9141_ $$y2022
000907457 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907457 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907457 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000907457 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000907457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907457 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-29
000907457 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000907457 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000907457 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM COMMUN : 2021$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907457 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM COMMUN : 2021$$d2022-11-11
000907457 920__ $$lyes
000907457 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907457 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000907457 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x2
000907457 9801_ $$aAPC
000907457 9801_ $$aFullTexts
000907457 980__ $$ajournal
000907457 980__ $$aVDB
000907457 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907457 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000907457 980__ $$aI:(DE-Juel1)IEK-9-20110218
000907457 980__ $$aAPC
000907457 980__ $$aUNRESTRICTED
000907457 981__ $$aI:(DE-Juel1)IET-1-20110218