Hauptseite > Workflowsammlungen > Publikationsgebühren > Operando transmission electron microscopy of battery cycling: thickness dependent breaking of TiO 2 coating on Si/SiO 2 nanoparticles > print |
001 | 907457 | ||
005 | 20240712112829.0 | ||
024 | 7 | _ | |a 10.1039/D1CC07172F |2 doi |
024 | 7 | _ | |a 0009-241X |2 ISSN |
024 | 7 | _ | |a 0022-4936 |2 ISSN |
024 | 7 | _ | |a 1359-7345 |2 ISSN |
024 | 7 | _ | |a 1364-548X |2 ISSN |
024 | 7 | _ | |a 2050-5620 |2 ISSN |
024 | 7 | _ | |a 2050-5639 |2 ISSN |
024 | 7 | _ | |a 2128/31109 |2 Handle |
024 | 7 | _ | |a altmetric:121852518 |2 altmetric |
024 | 7 | _ | |a WOS:000751912700001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02049 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Basak, Shibabrata |0 P:(DE-Juel1)180432 |b 0 |e Corresponding author |
245 | _ | _ | |a Operando transmission electron microscopy of battery cycling: thickness dependent breaking of TiO 2 coating on Si/SiO 2 nanoparticles |
260 | _ | _ | |a Cambridge |c 2022 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1682598343_3816 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid–electrolyte interface formation. Here, we use operando transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) |0 G:(DE-HGF)POF4-5353 |c POF4-535 |f POF IV |x 1 |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 2 |
536 | _ | _ | |a Electroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916) |0 G:(EU-Grant)892916 |c 892916 |f H2020-MSCA-IF-2019 |x 3 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Tavabi, Amir H. |0 P:(DE-Juel1)157886 |b 1 |
700 | 1 | _ | |a Dzieciol, Krzysztof |0 P:(DE-Juel1)164430 |b 2 |
700 | 1 | _ | |a Migunov, Vadim |0 P:(DE-Juel1)159136 |b 3 |
700 | 1 | _ | |a Arszelewska, Violetta |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 5 |
700 | 1 | _ | |a Kungl, Hans |0 P:(DE-Juel1)157700 |b 6 |
700 | 1 | _ | |a Kelder, Erik M. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wagemaker, Marnix |0 0000-0003-3851-1044 |b 8 |
700 | 1 | _ | |a George, Chandramohan |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 10 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 11 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 12 |
773 | _ | _ | |a 10.1039/D1CC07172F |g Vol. 58, no. 19, p. 3130 - 3133 |0 PERI:(DE-600)1472881-3 |n 19 |p 3130 - 3133 |t Chemical communications |v 58 |y 2022 |x 0009-241X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907457/files/Invoice_INV_017804.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907457/files/operando%20transmission.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907457 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180432 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157886 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164430 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)157700 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130824 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5353 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 2 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a TIB: Royal Society of Chemistry 2021 |0 PC:(DE-HGF)0110 |2 APC |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-29 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-11 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEM COMMUN : 2021 |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 2 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|