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ABSTRACT

Beam shaping—the ability to engineer the phase and the amplitude of massive and massless particles—has long interested scientists
working on communication, imaging, and the foundations of quantum mechanics. In light optics, the shaping of electromagnetic waves
(photons) can be achieved using techniques that include, but are not limited to, direct manipulation of the beam source (as in x-ray free
electron lasers and synchrotrons), deformable mirrors, spatial light modulators, mode converters, and holograms. The recent introduction
of holographic masks for electrons provides new possibilities for electron beam shaping. Their fabrication has been made possible by
advances in micrometric and nanometric device production using lithography and focused on ion beam patterning. This article provides a
tutorial on the generation, production, and analysis of synthetic holograms for transmission electron microscopy. It begins with an introduc-
tion to synthetic holograms, outlining why they are useful for beam shaping to study material properties. It then focuses on the fabrication
of the required devices from theoretical and experimental perspectives, with examples taken from both simulations and experimental results.
Applications of synthetic electron holograms as aberration correctors, electron vortex generators, and spatial mode sorters are then
presented.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067528

I. INTRODUCTION

The transmission electron microscope was developed primar-
ily to study matter at the highest spatial resolution. However, over
time, the quantum wave nature of electrons has attracted increasing
interest for both fundamental reasons and applications. The wave
nature of electrons provides analogies with light optics. For non-
relativistic and monochromatic electrons, the Helmholtz equation

can be used to describe both electrons and photons. Concepts such
as the refractive index and lenses can also be considered in both
contexts with similar results. For electrons, electrostatic and magne-
tostatic potentials result in the retardation (or anticipation) of an
electron wave. Analogies between the two fields have been used
widely in electron microscopy. However, light optics has provided a
broad range of applications beyond imaging, with recent progress
(e.g., superoscillation microscopy) triggered by the concept of
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structured light waves, whereby a wave front and its spatial inten-
sity distribution can be controlled in a manner that goes beyond
the use of conventional optical elements. Recently, the concept of
structured waves has been extended to matter waves, primarily to
electrons. Structured electron waves include electron beams with
helical wave fronts (i.e., electron vortex beams), self-accelerating
beams, and non-diffracting beams, as well as orbital angular
momentum analyzers. One can also fabricate conventional electron
optical devices such as lenses, diffractive elements, and aberration
correctors using a holographic approach. The key technology for
electrons is the use of synthetic holograms to modulate the phase
and amplitude of the electron wave. The word “hologram” comes
from the Greek term for “whole writing.” The ability to write both
the intensity and the phase of an electron wave is achieved by the
creation of an interference pattern, which is related to the relative
phases of two waves.

Even though Gabor’s original concept of holography was
intended for electron optics,1 holograms have seen wider applica-
tions in light optics, becoming a ubiquitous concept (e.g., on
Canadian dollar notes). In electron microscopy, holography nor-
mally refers to the recording of the interference of a wave perturbed
by a semi-transparent specimen and a reference wave. In the
present context, the recreation of a perturbed wave from a calcu-
lated interference pattern is of primary interest. For the sake of
clarity, this approach is referred to as “synthetic holography,” while
a calculated pattern is referred to as a “computer-generated holo-
gram.” The two operations are inverse; when a fabricated interfer-
ence pattern is illuminated, an electron beam that has the phase
and amplitude of the original semi-transparent specimen is gener-
ated. A similar approach was historically implemented when a lack
of computing resources meant that researchers could not apply
numerical Fourier transforms and had to illuminate the recorded
electron interference patterns with lasers to recreate images of
objects.

In order to construct a synthetic hologram, one needs to scale
down the equivalent of a transparent electron micrograph to the
electron’s scale. Unfortunately, there is no electron optical analog
of a transparent object (i.e., an object that applies negligible inten-
sity reduction to the wavefunction). The best approximation is
given by the thin layer of a material with low electron absorption,
such as carbon or silicon nitride (Si3N4). Si3N4 can be produced
routinely in the form of membranes that can be inserted along the
electron path. Modern days nanofabrication techniques, such as
Focused Ion Beam (FIB) milling and Electron Beam Lithography
(EBL), allow to imprint thickness modulations on a membrane
with lateral and depth scales of tens of nm. Such scales are the
common ones needed to fabricate a synthetic hologram whose
typical total dimensions are in the range of a few micrometers with
details down to tens of nm. Therefore, the tools that are needed to
modulate both the phase and the amplitude of an electron wave are
available. Historically, developments have proceeded from rough
amplitude modulations of electron waves to today’s fine and
precise control over amplitude and phase modulations in the form
of complex patterns.

This Tutorial provides an overview of the theoretical and
numerical calculation, fabrication, and analysis of synthetic electron
holograms. The first chapter will focus on giving to the reader the

required theoretical knowledge starting from the concept of holog-
raphy, focusing particularly on off-axis holography, passing from
how computer-generated became an import tool for scientists, and
at last, how different types of synthetic holograms can be designed.
The second chapter focuses on the two mainly used fabrication
techniques in the production of synthetic holograms, also providing
details on the calibration process and possible optimizations
schemes. Last, in the third chapter, we show a series of examples of
the possible uses of synthetic holograms.

II. SYNTHETIC HOLOGRAM FORMATION: FROM
CALCULATIONS TO COMPUTER-GENERATED
HOLOGRAMS

A. Theory of hologram formation

We begin by describing interference between a generic per-
turbed wave and a “known” reference wave to form a hologram.
This approach allows us to describe both “imaging” holography
and synthetic holography as a general theoretical framework. From
a physical point of view, a hologram is generated by interference
between a reference wave function Ψref (~r) and the wave function of
interest

ΨI(~r) ¼ AI(~r)e
iwI (~r), (1)

where AI(~r) and wI(~r) are the phase and amplitude of the wave
function of interest, respectively. Holography involves writing, in
two dimensions, of an interference pattern between waves propa-
gating in three-dimensional space.

If we now consider a specific plane with coordinates
~ρ ¼ (x, y) and an out-of-plane direction z, the wave function in
three dimensions is

Ψholo(~r) ¼ ΨI(~r)þΨref (~r), (2)

whereas in a specific plane it is

Ψholo(~ρ) ¼ ΨI(~ρ)þΨref (~ρ), (3)

with corresponding intensity

Iholo(~ρ) ¼ jΨ(~ρ)j2

¼ jΨI(~ρ)j2 þ jΨref (~ρ)j2 þ 2Re[ΨI(~ρ)Ψ
*
ref (~ρ)]: (4)

Alternatively,

Iholo(~ρ) ¼ jΨI(~ρ)j2 þ jΨref (~ρ)j2

þ 2jΨI(~ρ)jjΨref (~ρ)jcos(wI(~r)� wref (~r)), (5)

where wref (~r) is the phase of the reference beam. The use of a refer-
ence wave allows the phase wI(~r) to be made visible as an intensity
modulation. The reference wave should have a known form, such
as a plane wave or spherical wave (sometimes substituted by a para-
bolic approximation). The process is referred to as “inline” or
“on-axis” holography if the waves propagate in the same direction
and as “off-axis” holography if the waves propagate in different
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directions. An in-depth comparison between the two schemes,
both theoretical and experimental, can be found in the papers by
Koch and Lubk2 and by Latychevskaia et al.3 It is worth mention-
ing that the on-axis and off-axis schemes are also possible for syn-
thetic holography. Here, for an in-line synthetic hologram, the
beam of interest is generated on the optic axis at different z values
(i.e., at different defocuses). On the contrary, off-axis synthetic
holograms are realized by using an inclined plane wave as a refer-
ence wave (details on how to do this are provided in the following
paragraphs), just as for an off-axis hologram, and the desired wave
function is generated in the Fraunhofer plane of the hologram on
one of the diffraction orders.

Throughout this paper, most of the discussion will refer to
off-axis synthetic holograms and holography, if not specified
otherwise.

B. “Image” holography for object phase reconstruction

Imaging holography is the basis of synthetic holography. If
one considers ΨI(~r) as a wave function obtained after passing a
partially electron-transparent sample with an unknown phase dis-
tribution, then holography can be used to extract this phase
information.

Off-axis holography is performed by splitting a wavefront
into two parts, typically using a biprism. In electron microscopy,
a biprism normally takes the form of a metal or metal-coated
wire that has a voltage applied to it, with one part of the beam
traveling through a region of interest on a specimen. The relative
tilt of the two parts of the electron wave introduced by the
biprism allows them to interfere with one another. The object
wave interacts with the sample and gains a phase that depends on
the physical features of the sample. The intensity of the resulting
hologram between the generic beam of interest in Eq. (1) and a
tilted reference plane wave (with Ψref (~ρ) ¼ ei~g�~ρ) is described by
the following expression:

Iholo(~r) ¼Ψ2
holo(~ρ) ¼ jΨI(~ρ)þΨref (~ρ)j2

¼ 1þ A2
I (~ρ)þ 2AI(~ρ)cos(wI(~ρ)þ~g �~ρ), (6)

where ~g is the in-plane component of the wave vector of the
plane wave and is determined by the tilt angle introduced by the
biprism. Three contributions to the intensity can be distin-
guished: the reference image intensity, the specimen image inten-
sity, and a set of cosinusoidal fringes, whose local phase shift and
amplitude are given by the phase and amplitude of the electron
wave function in the image plane. The phase and amplitude of
the wave function of interest can be extracted from the hologram
by applying a Fourier Transform (FT) and reconstructing the
complex wave function by means of an inverse Fourier Transform
(IFT). If required, 2π phase discontinuities can be removed. The
FT of Eq. (3) can be written in the form

FT Iholoð~rÞ½ � ¼ δð~kρÞ þ FT½A2
I ð~rÞ� þ δð~kρ þ~gÞ � FT AIð~rÞeiwIð~rÞ

h i
þ δð~kρ �~gÞ � FT AIð~rÞe�iwIð~rÞ

h i
; (7)

where δ(:) is the Dirac delta function and f1 � f2 represents the
convolution of f1 and f2, kρ is the in-plane component of the wave

vector k, with k2 ¼ k2ρ þ k2z ¼ 2mω
�h ¼ 2π

λdB

� �2
, where m is the elec-

tron mass, ℏ is the reduced Planck constant and λdB is the elec-
tron’s de Broglie wavelength. In this expression, the first two
terms are the FTs of the reference and sample wave function,

respectively, located at ~kρ ¼ 0. The last two terms are peaked at
~kρ ¼ +~g, correspond to the FTs of the desired image wave func-
tion and its complex conjugate and are known as sidebands, while
those centered on the origin are referred to as a center band. The

larger the value of~kρ, i.e., the larger the tilt of the reference wave,
the further from the origin are the sidebands. The sidebands
contain both amplitude and phase information about the wave
function of interest. In order to recover the complex wave func-
tion, one of the sidebands is selected and isolated by applying a
mask, shifted to the origin of reciprocal space and inverse Fourier
transformed. The most commonly used mask is a circular one (to
have the same resolution in the reconstructed phase image along
all directions) that has soft edges and a radius that is no larger
than one-third of the distance between the sideband and the
origin (as the radius of the center band is twice that of the side-
band).4,5 Nonetheless, the circular mask radius may be larger
than 1/3 of |g| and reconstructions with hard masks (that are not
necessarily circular masks) are also used. The choice of the mask
depends on the support/band limitations of the central/side
bands.6 The phase image may need to be “unwrapped” to remove
2π phase discontinuities, which appear at positions where the
phase shift exceeds 2π, as IFT operations are calculated modulo
2π.7 The number of phase wraps can sometimes be reduced by
removing a constant phase gradient by repositioning the center of
the sideband.

C. Synthetic hologram generation

Since the 1960s, as a result of advances in computational
power, so-called computer-generated holograms (CGHs) have been
introduced.8,9 As Lesem et al.10 stated in 1968, when referring to
holograms for 3-D displays:

“A properly illuminated hologram forms for the viewer a
picture which is identical with that which he would observe if
he were looking at the scene himself. A computer generated
hologram yields such a 3-D picture, without the original scene
ever having to exist.”

Based on this simple explanation, it is possible to understand
how CGHs allow desired patterns to be designed and tested
without the need to create models for each iteration, reducing the
time required to make a synthetic CGH (S-CGH). The term “syn-
thetic” is used to underline the fact that the last step involves pro-
ducing a hologram that will be inserted into a microscope or an
optical bench. Figure 1 shows a representation of the two concepts
(or modes) of holography: “conventional” image holography
[Figs. 1(a) and 1(b)] and “synthetic” holography [Fig. 1(c)], where
here by illuminating an off-axis S-CGH with a plane wave, it is
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possible to observe the desired wave function in the Fraunhofer
plane on one of the diffraction orders.

Generation of the desired object and reference wave functions,
as well as the interferometric process, can be carried out computa-
tionally. Most of the computational steps described in this article
have been carried out using a modified version of Stem_Cell soft-
ware.11 In this software, the interferometric process, which consists
of overlapping wave functions in a given plane, is carried out com-
putationally. A CGH generated by such a set of operations (i.e., the
interference intensity pattern) is exported to a file, which can be
used to fabricate an S-CGH.

The fabrication process requires modern state-of-the-art
machines and well-developed processes, which are described in
Secs. II D and II E. This is because the typical dimension of an
S-CGH ranges from a few μm to hundreds of μm, while the small-
est features can be only a few tens of nm in size. An S-CGH
shows the desired function when it is illuminated by an incident
(reference) beam. One of the typical optical setups used to test an
off-axis S-CGH is shown in Fig. 2(a), where the TEM is used in
Low Mag mode. In fact, due to the dimensions of the S-CGH, the
illumination needs to be widespread and as paraxial as possible.
This is usually achieved by switching off the condenser-objective
lens (the main imaging lens). Moreover, as a periodicity of
100 nm (typical for most S-CGHs) corresponds to a hscattering
angle of only 20 μrad, the required very long focal length is
usually not accessible when the main imaging lens (the objective
lens) is switched on. In low-angle diffraction (LAD) mode, an
off-axis S-CGH acts as a transmission diffraction grating, with

each of the diffracted beams centered on a different position in
the diffraction plane.

A manufactured off-axis S-CGH can be mounted in one of
the condenser aperture planes of an electron microscope to gener-
ate the desired wave function at the sample plane [as shown in
Fig. 2(b), in the case of an off-axis Fraunhofer S-CGH].

A simple recipe for producing an off-axis S-CGH is to take
the formula for an “image hologram” and to invert it. By illuminat-
ing a material that introduces the same amplitude (or intensity)
modulation as in Eq. (6), it is possible to obtain an object from
which one of the diffracted beams corresponds to the wave that
passed through the sample.

Depending on the type of interaction with the beam, synthetic
holograms can be divided into three primary categories: (i) ampli-
tude holograms; (ii) phase holograms; and (iii) mixed (amplitude-
phase) holograms. In this way, they can encode (i) only the phase
or (ii) both the phase and the amplitude of a wave function of
interest. The character of the hologram (phase, amplitude, or both)
and the type of encoding are independent. For example, a phase
hologram can encode both the amplitude and the phase of a wave
function, but with some restriction on efficiency. With respect to
an incident plane wave, the transmittance function of an
(amplitude-phase) S-CGH can be written in the form

TH(~ρ) ¼ A(~ρ)eiΔw(~ρ), (8)

where ~ρ is the transverse spatial coordinate with respect to the
propagation direction of the beam, while A(~ρ) and Δw(~ρ) are

FIG. 1. Schematic diagram of (a) traditional “image” holography, (b) image reconstruction where an observer can reconstruct the image of an object by shining the holo-
gram recorded in (a) with the same reference wave, while (c) schematically represents how “synthetic” off-axis holography is carried out: a hologram is generated using a
computer and by illuminating it with a plane wave, it is possible to observe the object of interest (or desired wave function) in the Fraunhofer plane.
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amplitude and phase modulations. An amplitude hologram modi-
fies the amplitude of the incident wave A(~ρ) and keeps the phase
unchanged, such that Δw(~ρ) ¼ constant;9 a phase hologram modi-
fies the phase of the incident wave by modulating Δw(~ρ), such that
A(~ρ) ¼ constant;12 a mixed hologram modifies both A(~ρ) and
Δw(~ρ).13,14 It should be noted that a “phase” S-CGH always has an
additional absorption effect that depends on the thickness of the
material and its chemical composition, while even a pure-phase
S-CGH also has an effect on the amplitude of the wave function.
An alternative way to achieve pure phase modification is to substi-
tute a material-based hologram with a structured electric and/ or
magnetic field, which introduces the desired phase modulation. It
is then more challenging to design a complex and arbitrary phase
shift.15,16 This paper does not concentrate on such phase elements.

D. Different types of holograms

1. Amplitude holograms

In light optics, binary holograms (characterized by a local
transmittance that is 0 or 1) are produced from partially transpar-
ent elements, such as gratings that are made from metals or sub-
strates that can block a light beam in some regions in the
transverse plane. They are considered to be the simplest types of
S-CGHs that can be fabricated. Amplitude modulation in the trans-
mission is usually achieved by covering parts of the beam with a
material that can prevent light from passing through it (an opaque
material that absorbs the beam), by deflecting the beam to a high
angle or by reflecting part of the incident beam.

In electron optics, every scattering event that strongly modifies
the electron beam beyond the simple phase effect can be considered
as an amplitude effect. In particular, strong elastic changes of
momentum due to atomic and thermal scattering contribute to a
broadly diffuse intensity, while inelastic scattering largely alters the
coherence of the electrons (the effect of the beam coherence in

electron holography will be discussed in Sec. II E 2). Both effects
contribute to remove intensity from the diffraction direction. These
scattering processes are usually stronger for heavy materials and
thicker substrates. The blocking of electrons can be achieved by
using a thick sputtered layer of a high-atomic-number element
such as Au or Pt. By doing so, the wave front amplitude is fully
preserved or completely blocked, locally. Since a hologram absorbs
or scatters electrons, its action is non-unitary and the overall inten-
sity is reduced by a factor that is proportional to the blocked area
in the incident beam cross section. By definition, amplitude holo-
grams block part of the electron beam and have limited efficiency.
Since absorption modulation is an amplitude-dominated effect,
such holograms result in a diffraction pattern that is symmetrical
between the positive and negative orders. Moreover, it is impossible
to concentrate the intensity on a single diffraction spot and a large
part of the intensity is directed to the 0th order transmitted beam.

In order to gauge the absorption of a material, a useful param-
eter is the mean free path for plasmon excitation (particularly for
amorphous light material, since plasmon inelastic scattering can be
considered the most important process).17 The mean free paths of
several materials are reported in Table I for 200 keV electrons.

FIG. 2. Rendered images of (a) the Low-Mag TEM
testing configuration where the S-CGH is inserted in the
sample plane, while (b) shows a typical working condition
where the S-CGH is inserted in the second condenser
aperture plane. The condenser system here reported
comprises three condenser lenses, as in most 300 kV
TEMs, while the S-CGH in consideration is a Fraunhofer
S-CGH.

TABLE I. Theoretical and experimental mean free paths for 200 keV electrons. The
experimental values are total inelastic mean free paths, which include single electron
excitations such as inner-shell ionization edges. The terms in parentheses are mean
free paths for collective valence electron (i.e., plasmon) excitations.17

Material Au Ag Pt Si3N4 SiO2 Al2O3 a-C

Theoretical
(nm)17

76.1 88.3 76.4 135.3 133.6 135.7 106

Experimental
(nm)18

84
(120)

100
(125)

82
(120)

… 155 140 160
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It should also be noted that the construction of pure ampli-
tude holograms, in which the absorptive material is alternated with
vacuum, is complicated at small sizes—because of the probability
that long and thin parts of the hologram may collapse or join
together during fabrication or under electron beam illumination.

2. Phase holograms

In light optics, one way to implement a phase modulation is
by etching grooves of a desired structure on a (transparent or
reflective) surface, in order for the optical path inside (or upon the
reflection from) the material to vary from one ray to another,
thereby locally changing the phase of the outgoing wave function.
In contrast, in electron optics, phase modulation is achieved by
exploiting the relationship between scalar and vector potentials.
The phase shift of an electron wave function19 is given by the
expression

Δw(~ρ) ¼ CE

ðþ1

�1
V(~ρ, z)dz � e

�h

ðþ1

�1
Az(~ρ, z)dz, (9)

where

CE ¼ 2π
λ

e
E
E0 þ E
2E0 þ E

, (10)

V(~ρ, z) and Az(~ρ, z) are the scalar electrostatic potential and the z
component of the magnetic vector potential, respectively, e is the
absolute value of the electron charge, �h ¼ h/2π is the reduced
Planck constant, λ is the relativistic electron wavelength, E0 is the
electron energy at rest, and E is the energy of the moving electrons.
Typical electron energies in a TEM are 200 or 300 keV, resulting in
corresponding values of CE 200 keV ¼ 7:3 � 10�3 rad

Vnm and
CE 300 keV ¼ 6:6 � 10�3 rad

Vnm. In a non-magnetic material, only the
scalar electrostatic potential contributes to the phase shift. It can
often be approximated by the mean inner potential Vmip, which
provides a local acceleration to the electrons,20 modifying the
electron-optical path. The phase variation due to Vmip and the local
thickness t(~ρ) is given by a simplified version of Eq. (9),

Δw(~ρ) ¼ CE

ðt(~ρ)
0

Vmipdz ¼ CEVmipt(~ρ): (11)

When choosing a material for a synthetic hologram, one must take
into account the robustness, electrical conductivity, and the value
of Vmip. Most phase S-CGHs are currently made using Si3N4,
which can be used to fabricate a nearly pure phase mask since it is
almost transparent to an incoming electron beam. S-CGHs can be
obtained by “carving” grooves in a free-standing Si3N4 membrane.

The calculated value of Vmip for Si3N4 has been estimated to be
�15V.21 The same value was reported by Harvey et al.22 A slightly
higher value was reported by Bhattacharyya et al.,23 while a value
of �10V was found by Shiloh et al.24 The specific Si3N4 prepara-
tion process and tension may affect the precise value. On the
assumption that Vmip � 15V, the required thickness to introduce a
2π phase shift for several electron energies is shown in Table II.

In recent years, new materials have been explored for the pro-
duction of phase S-CGHs, with promising results shown for amor-
phous C.25 The mean inner potentials of the materials from Table I
are reported in Table III.

A schematic diagram of the operating principle of a phase
mask is shown in Fig. 3 for an incoming plane wave, whose wave
front is shown in red. A phase ramp, which results from the thick-
ness profile of the phase mask, introduces a linear phase shift to a
plane wave in a specific direction or azimuthal angle. The thinner
region does not alter the electron beam wave front significantly,
while the thicker region can be chosen so that it introduces a phase
shift such as 2π to an incoming electron beam. The phase-shifted

FIG. 3. Schematic diagram showing the phase-shifting effect on an incident
plane electron wave of (left) a phase ramp and (right) a spiral phase mask.
Readapted from “New approaches for phase manipulation and characterization
in the transmission electron microscope,” with the permission of Federico
Venturi.32

TABLE III. Theoretical and experimental mean inner potentials of the materials in
Table I. Most values are taken from Refs. 30 and 31. For amorphous C, the mean
inner potential depends on the density of the material.

Material Au Ag Pt Si3N4 SiO2 Al2O3 a-C

Theoretical
(V)

25
−
31

18.74
− 23

20
− 27

11.3
− 17.6

∼15.1 15.7−
16.7

Ref. 26

10.1−
11.3

Ref. 27
Experimental
(V)

21
−
30

17−
23

∼25 ∼15
Ref.
21

∼17 16.9 ±
0.36

Ref. 26

9.09−
10.7
Refs.
28, 29

TABLE II. Si3N4 thickness required to introduce a 2π phase shift for different elec-
tron energies for Vmip≈ 15 V.

E (keV) 60 80 120 200 300

t(nm) 36.9 41.5 48.5 57.4 64.2
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wave front, which is shown using a color gradient, causes the elec-
tron beam to be deflected (left) or to carry OAM (right). The phase
masks shown in Fig. 3 are in-line S-CGHs and are the simplest
types that can be designed. Nevertheless, great manufacturing pre-
cision is required, as the phase shift is encoded in the pointwise
thickness profile of the material. Such an in-line S-CGH does not
require a reference beam.

On the other hand, for an off-axis S-CGH, the encoded beam
(or desired beam) and hologram diffraction pattern are decoupled
from one another. The off-axis S-CGHs are, therefore, less sensitive
to small imperfections.

3. Amplitude-phase holograms

In the most general class of holograms, the material encodes a
change in both the amplitude and the phase of the electron beam.
In a strict sense, all phase holograms are amplitude-phase holo-
grams, since any variation in thickness affects both the amplitude
and the phase of the electron wave upon propagation.33 Moreover,
given the practical difficulties of fabricating complex amplitude
gratings that are mechanically stable, amplitude gratings are often
fabricated on continuous Si3N4 membranes.34 Depending on how
transparent the thick parts of the grating are, all levels between
amplitude and phase gratings can be obtained. The smart use of
two materials can be used to cancel amplitude effects in a phase
hologram or to add an amplitude envelope to a phase grating. This
approach could allow for the joint amplitude and phase encoding
of wave functions but has not been explored in detail. Even the
aperture effect that encloses a phase hologram (and truncates the
beam) is still a type of amplitude filtering. In general, amplitude
and phase modulations have slightly different effects, and the two
contributions are superimposed. Therefore, it is difficult to control
the amplitude and phase simultaneously using different holograms.

E. Calculation of holograms

1. Encoding the phase in phase holograms
and amplitude holograms

In this section, it is shown how to calculate a hologram for a
target wave function for the off-axis case, i.e., when a target wave
function Ψ(k) is reproduced in the first diffraction order. We
assume that the reference wave is a plane wave with an in-plane
wave vector ~g, as determined by the inclination of the reference
wave.

In “imaging holography,” the condition for good reconstruc-
tion is a large enough fringe spacing and an object with a narrow
frequency band, in order to be able to isolate and demodulate the
phase properly. Similarly, in synthetic holography, a desired func-
tion Ψ(k) should have a compact support so that its extension in
Fourier space is smaller than a reference frequency~g. The required
phase modulation Δw(~ρ) needs to be calculated based on the
desired diffraction shape. The hypothesis is that one can control
the phase α(~ρ) of the desired diffracted beam at the plane of the
hologram. This should simply be the phase of the inverse FT of
the object Ψ(k), with the addition of a phase gradient as a
result of the off-axis tilt. One can numerically calculate
α(~ρ) ¼ arg{FT�1(Ψ(k))}þ~g �~ρ. For example, α(~ρ) ¼ ‘θ þ~g �~ρ for

a vortex beam, where ‘ is the desired winding number of the vortex
and θ is the azimuth of the~ρ coordinate in the hologram plane.

If FT�1(Ψ(k)) had a constant amplitude over the hologram
area (normally a circular top hat function), then Tg ¼ exp(iα(~ρ))
would be the transmission function Tg of the desired phase plate
and its Fourier transform would be Ψ(k), apart from a tilt of ~g.
However, only the phase at the exit plane of the hologram is
encoded. Methods to generalize this approach are discussed below.
In the phase hologram case, the phase can be any function
Δw ¼ f (α), with the periodicity condition f (α(~ρ)) ¼ f (α(~ρ)þ 2nπ).
For example, a sinusoidal grating that is used to generate vortex
beams would be Δw ¼ w0sin(‘θ þ~g �~ρ). Since the fundamental
requirement for holography is that the function α(~ρ) is mainly
bandwidth-limited (i.e., its FT is mainly contained within a fre-
quency range σk � g), the transmission function of the full holo-
gram is T ¼ exp(i f ( α(~ρ))), with approximate periodicity ~g. It has
a diffraction pattern that is given by many well-separated beams
centered at n~g, where n [ Z is the diffraction order, and each dif-
fracted beam can be spatially separated. For the first order beam,
the hologram acts as the desired transmission function
Tg ¼ exp(iα(~ρ)) . As f changes, so does the distribution between
diffraction orders. For any form of f, the first diffraction order is
only affected by a phase effect Tg ¼ exp(iα(~ρ)).

For an amplitude hologram, it is possible to assume a simpli-
fied form of interference, where one retains only the cross term in
Eq. (5). The simplest form of interference is just a cross term
T ¼ cos(α(~ρ)), which is clearly an amplitude modulation. However,
as in the case of a phase hologram, one can use any function of the
form T ¼ f (α(~ρ)). Analogously to a phase hologram, a sinusoidal
amplitude grating that generates a vortex takes the form
T ¼ A0

2 (1þ sin(‘θ þ~g �~ρ)), where positivity of the amplitude holo-
gram is enforced. Even in this case, for any form of f, the first
order beam is only affected by a phase effect Tg ¼ exp(iα(~ρ)).
Therefore, amplitude and phase holograms are the same at the level
of individual diffracted beams. However, the phasing and ampli-
tude ratio between the diffraction orders are different. For example,
the first diffraction order is in phase with the zero order for an
amplitude hologram, whereas there is generally a dephasing close
to π/2 for a phase hologram. Amplitude effects are discussed in
Secs. II E 4 and II E 5.

It is also important to mention Fresnel holograms. In this
case, the desired intensity is not obtained in the Fraunhofer plane,
but in an intermediate (Fresnel) plane. Although the concept is
identical, the Fourier transform is then substituted by the Fresnel
integral and

α(~ρ) ¼ arg{Ψ(k)� P(�Δz))}þ~g � ρ! , (12)

where � is a convolution integral and
P(Δz) ¼ 1

iλΔz exp i π
λΔz (x

2 þ y2)
� �

.
Δz here is the free propagation distance at which the holo-

gram’s diffraction is observed. If instead of the free space propaga-
tion a lens is used, then the effective value of Δz must be scaled to
account for the effective optical distance.19

The Fresnel transform is sometimes defined as fractional
Fourier transform35 so we are tempted to just assume it is perfectly
analogous to the FT. In reality, there is an important practical
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difference between the two: the Fresnel propagation depends, in
general, on both the position and momentum coordinates. This
means that, for example, shifting the hologram changes both the
position and the shape of the diffracted beam. Moreover, in a TEM
microscope, the Fresnel distances are typically not calibrated and
particular care should be considered in the match between simula-
tions and experiments.36,37

For more details about a specific case of Fresnel hologram, the
reader should refer to Sec. IV C.

2. Coherence

Another aspect that so far was neglected is the coherence of
the beam. While the calculation is typically carried out with a
simple Fourier transform, more in general, this approach is correct
only for a perfectly coherent beam. Coherence is defined in differ-
ent contexts. In quantum mechanical term, a coherent state is a
pure quantum mechanical state defined by a single wave function.
A pure state always produce interference so we can describe coher-
ence as the ability to produce significant interference.

In the imaging holography with a biprism, the most generic
form of the interference figure is

I ¼ 1þ A2
I (~ρ)þ 2μAI(~ρ)cos(wI(~ρ)þ~g �~ρ), (13)

The additional μ factor describes the coherence as, indeed, the
ability to produce diffraction fringes.38,39

The electron beam in a microscope is always partially coher-
ent.20 The most consistent description of the state can be done by
the formalism of density matrix or equivalently by the Wigner
function.40,41 In practical term, it can be demonstrated that this is
equivalent to saying that a single wavefunction is substituted by a
set of wave functions having different energy and momentum and
that do not interfere with each other. The energy distribution deter-
mines the so-called longitudinal coherence (or temporal coher-
ence), while the extension of the electron source assumed as a
collection of independent emitters is the main responsible for the
transverse coherence (or spatial coherence).

For holography, the spatial coherence is mainly responsible
for the loss of interference (contrast?) and it is clear that the same
arguments hold for synthetic holography.

A look at the optical scheme in Fig. 2 convinces us that a
nominal plane wave impinging on the hologram is actually an inco-
herent sum of plane waves with slightly different momentum. This
spread in the Fraunhofer diffraction determines the size of the dif-
fraction spot. This is, therefore, the point spread function of the
intensity of the synthetically generated electron beam. A simple
convolution can be added in simulation to account for this effect,
but it is clear that the effect must be reduced for many practical
applications of synthetic holography.

A practical approach in holography is the use of limiting aper-
tures to limit the effective part of the source contributing to the
imaging and wave formation. This approach can be extended to
synthetic holography to improve the final result.

It is worth finally mentioning that for Fresnel holograms, the
convolution is not a valid simulation approach. High resolution
microscopy has invented a series of effective approaches based on

“damping factors,”42 while a more general approach is to consider the
effective incoherent sum of diffraction from component plane waves.

3. Diffraction efficiency and groove profile

A key parameter that defines the performance of an off-axis
S-CGH is its diffraction efficiency, which can be defined as the
ratio between the intensity measured in a specific diffraction order
and the intensity of the incoming beam or the total transmitted
intensity.22 According to the first definition, efficiency is

η(inc)n ¼ In
Iinc

, (14)

where In is the intensity of order n and Iinc is the intensity of the
incident beam. η(inc)n is then known as the absolute diffraction effi-
ciency. The total transmitted efficiency is

Itrans ¼
X
n

In, (15)

and the second definition of diffraction efficiency is

η(trans)n ¼ In
Itrans

: (16)

In amplitude and phase S-CGHs, the beam has to pass
through a material and the total transmitted intensity is reduced,
typically by 50% and up to 30%–40%, respectively. The reduction
results from absorption and other inelastic processes, even in high-
transmittance materials such as Si3N4. Low intensities might have
some implications in applications due to signal/noise ratios, both
positive and negative, but in most cases, a high brightness source is
ideal to improve the transmitted intensity by the synthetic holo-
gram. Henceforth, we use η to refer to η(trans)n , the so-called trans-
mitted efficiency. When a distinction is necessary, the appropriate
symbol is used. As mentioned above, the efficiency of an S-CGH
depends on whether it is phase- or amplitude-modulated. However,
the efficiency also depends on the groove profile/ thickness pattern
of the hologram. In order to establish the relationship between
groove profile and efficiency, we begin by explaining how an
incoming wave function is transformed after its interaction with an
S-CGH. This interaction depends on the groove pattern. According
to Eq. (8), the transfer function TH(~ρ) describes the amplitude and
the phase of a beam that has passed through a diffraction grating.
An alternative representation of the transfer function, specifically
for a phase S-CGH, is given by the expression

TH(~ρ) ¼ ei
~Vt(~ρ), (17)

where ~V ¼ CEVmip þ iγ is the complex index of refraction, γ ¼ 1
λmfp

is the absorption coefficient, λmfp is the mean free path of an elec-
tron, and t(~ρ) is the thickness profile. Since the transfer function is
independent of the incident wave function Ψinc(~ρ), the transmitted
wave function can be written in the form

Ψt(~ρ) ¼ Ψinc(~ρ)T(~ρ) ¼ Ψinc(~ρ)e
i~Vt(~ρ): (18)
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In most case studies, the incoming wave is assumed to be a plane
wave and can be ignored, as it has a flat-phase wave front and its FT
depends mainly on the transfer function. A generic diffraction grating
is characterized by a periodic wave function f (α), which describes its
groove pattern. It is usually dimensionless and normalized from zero
to unity with a period 2π, such that f (α þ 2π) ¼ f (α). The function
can be expanded as a Fourier series in the form

f (α) ¼
X1
n¼�1

cne
inα , (19)

where n [ Z and the nth Fourier coefficient

cn ¼ 1
2π

ð2π
0

f (α)e�inαdα: (20)

Each value of n represents one diffraction order. If f (α) is real-
valued, then cn ¼ c*�n, where the asterisk denotes a complex conju-
gate and c0 is real. The Fourier power spectrum of f (α) is given by
the expression

S ¼
X
n

jcnj2: (21)

For a bi-dimensional grating with a single type of groove
profile, the periodic function f (α) has

α ¼ α(~ρ), (22)

where j~ρj and θ, the azimuthal angle, are polar coordinates that
define the grating and j~ρj is measured in units of the grating spatial
period Λ in the θ ¼ 0 direction.

For an amplitude S-CGH, the Fresnel transmission function
T(x, y) is proportional to the grating function

T(~ρ) ¼ bf (α(~ρ)), (23)

where b is a constant and 0 	 b 	 1.
The wave function impinging on the S-CGH is denoted

Ψin(~ρ). The output wave function can then be determined as
follows:

Ψout(~ρ) ¼ T(~ρ)Ψin(~ρ) ¼ bf (α(~ρ))Ψin(~ρ): (24)

For a phase S-CGH, the transmission function is given by the
expression

T(~ρ) ¼ ei~af (α(~ρ)), (25)

where ~a ¼ a1 þ ia2 is a complex number, a1 ¼ CEVmiptM ,
a2 ¼ γtM and tM is the maximum thickness difference between a
peak and a valley. It can be shown that, depending on the micro-
scope accelerating voltage, a2 � 7%� 8% a1 for Si3N4.
Furthermore, the product of tM and f (α(~ρ)) yields the local thick-
ness of the grating t(~ρ). Therefore, for this type of hologram, the
output wave function is given by the expression

Ψout(~ρ) ¼ Ψin(~ρ)e
i~af (α(~ρ)): (26)

The efficiency of the S-CGH can be estimated/ calculated
from the power transmission spectrum, given by the sum of the
Fourier coefficients of the transmission function Fourier series
expansion

T (~ρ) ¼
X
n

jτnj2, (27)

where the intensity of the nth diffraction order is modulated by the
transmission coefficient jτnj2. For amplitude S-CGHs, θn ¼ nλ

Λ is the
diffraction angle for the nth order diffracted beam. In an ideal phase
hologram, the transmission should be unitary. Therefore, the ideal
phase plates are the optimal choice to convey the largest intensity on
the diffracted-shaped beams. In practice, the absorption for real
phase plates is often relatively high and the overall efficiency on the
generation of intense beams could, in some cases, favor amplitude
holograms in terms of intensity: a precise balance depends on the
details for the synthetic hologram design and its material.

4. Comparison between grating profiles

In this section, a series of grating profiles are presented for
both amplitude and phase S-CGHs. In each case, the grating profile
function and the Fourier coefficients of the transmission function
τn are given. Calculations describing how the equations were
obtained are given in Appendix B.

a. Sinusoidal/cosinusoidal profile. The simplest profile is sinus-
oidal/cosinusoidal. As they have the same characteristics, only one
is considered. For an amplitude S-CGH with a cosinusoidal profile,
f (α) ¼ 1

2 (1þ cos(α(~ρ))). The transmission function is

T(~ρ) ¼ b
2
(1þ cos(α(~ρ))), (28)

where 0 	 b 	 1 is a constant. For a phase S-CGH, the transmis-
sion function can be written in the form

Tð~ρÞ ¼ e
i
~a
2
1þ cosα~ρ ¼ e

i
a1
2
cosα~ρ

e
�
a2
2
cosα~ρ

e
i
~a
2

¼ eia
0
1cosα~ρe�a

0
2cosα~ρei~a

0
: (29)

For both types of holograms, f (α) is normalized between zero
and unity, so that for an amplitude S-CGH, the power transmit-
tance changes locally between 0 for full absorption and 1 for no
absorption. For an ideal phase S-CGH, the power transmittance is
always 1 and it is possible to estimate the optimal phase shift intro-
duced by the local thickness profile to maximize the intensity of
one of the diffraction orders (usually n = ±1). For an amplitude
S-CGH, the squared modulus of the Fourier coefficient of the
transmission function is

jτn(~ρ)j2 ¼

1
4
b2 for n ¼ 0,

1
16

b2 for n ¼ +1,

0 for the other orders,

8>>><
>>>:

(30)
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for the nth order, whereas for a phase S-CGH, the corresponding
expression is

jτn(~ρ)j2 ¼ J2n(~a
0) e�2a02� J2n(a

0
1)� a022

4
(Jn�1(a

0
1)� Jnþ1(a

0
1))

2
� �

e�2a02 :

(31)

Figure 4 shows the characteristic efficiency of the first diffracted
order for a phase S-CGH, realized on a Si3N4 membrane, plotted as a
function of the parameters a01 and a02. The efficiency reaches a
maximum when a01 � 1:84 rad. In the “real phase S-CGH” profile,
the contribution of absorption is appreciable, with the main contribu-
tion originating from the exponential term e�2a02 . The ideal value of
a01, which maximizes jτ1(~ρ)j2 of an ideal phase S-CGH, corresponds
to a peak-to-valley phase difference of �3:68 radians (1:17π), which
corresponds to tM � 33:6 nm for 200 keV electrons.

b. Squared profile. The second profile considered here is a
squared profile, for which f (α) ¼ 1

2 (1þ Sign(sin(α(~ρ)))). For an

amplitude S-CGH, the transmission function takes the form

T(~ρ) ¼ b
2
(1þ Sign(sin(α(~ρ)))), (32)

while for a phase S-CGH the transmission function can be written

T(~ρ) ¼ei
~a
2(1þSign(sin(α(~ρ)))) ¼ ei~a

0Sign(sin(α(~ρ)))ei~a
0

¼eia
0
1Sign(sin(α(~ρ))) e�a02Sign(sin(α(~ρ)))ei~a

0
: (33)

For an amplitude grating, the square modulus of the Fourier
coefficients of the transmission function is

jτn(~ρ)j2 ¼

1
4
b2 for n ¼ 0,

1
n2π2

b2 for n ¼ odd,

0 for n ¼ even,

8>>><
>>>:

(34)

while for a phase grating, it is

jτn(~ρ)j2 ¼
[cos2(a01)cosh2(a02)þ sin2(a01)sinh2(a02)]e�2a02 for n ¼ 0,
4

n2π2
[sin2(a01)cosh2(a02)þ cos2(a01)sinh2(a02)]e�2a02 for n ¼ odd

0 for n ¼ even:

8>><
>>: , (35)

Figure 5 shows the efficiency of the first diffraction order for a
phase S-CGH. The maximum is reached when a01 � 1:57 rad, so

the optimal peak-to-valley phase difference corresponds to Δw � π
for an ideal phase S-CGH.

FIG. 4. jτ1j2 plotted for a phase S-CGH with a cosinusoidal profile as a func-
tion of a01. As an inset is shown the 3-D rendering of a cosinusoidal profile.
Here, “ideal” means no absorption (a02 ¼ 0), while for the “real” case we
assumed a02 ¼ 0:07a01. The choice of this specific relation of a02 has been done
considering as support material Si3N4 and 200 keV electrons.

FIG. 5. jτ1j2 for a squared profile as a function a01. As an inset is shown the
three-dimensional profile. Here, “Ideal” means no absorption (a02 ¼ 0), while for
the “real” case we assumed a02 ¼ 0:07a01.
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c. Triangular profile. The third case is a triangular profile,
which can be described (for an isosceles triangle) by the function
f (α) ¼ 1

π (Sign(sin(α(~ρ))))(π �Mod(α(~ρ), 2π)). For an amplitude
S-CGH, the transmission function is

T(~ρ) ¼ b
1
π
(Sign(sin(α(~ρ))))(π �Mod(α(~ρ), 2π)), (36)

while for a phase S-CGH, it is

T(~ρ) ¼ ei~a
1
π(Sign(sin(α(~ρ))))(π�Mod(α(~ρ),2π)), (37)

where Mod( p, q) is the remainder after dividing p by q. For an
amplitude S-CGH with a triangular modulation, the efficiency of
the nth diffracted order is proportional to

jτnj2 ¼

1
4
b2 for n ¼ 0,

4
n4π4

b2 for n ¼ odd,

0 for n ¼ even,

8>>><
>>>:

(38)

while for a phase S-CGH with a triangular modulation, it is

jτnj2 ¼ (a21 þ a22)[1þ 2(�1)nþ1e�a2 (cos(a1))þ e�2a2 ]

[a41 þ 2a21a
2
2 þ a42 þ (nπ)4 � 2n2a21π2 þ 2n2a22π2]

: (39)

Figure 6 shows how the efficiency changes as different param-
eters are varied. If a2 is non-zero, i.e., if absorption is considered,
then the efficiency is reduced and the peak moves to lower values
of a1. jτ1j2 has a maximum at a1 � 4:31 rad for an ideal phase
S-CGH, whereas it is at a1 � 4 rad for a real S-CGH.

d. Blazed profile. An interesting triangular profile is a blazed
profile, which is similar to a sawtooth blade and can be described
by the function f (α) ¼ 1

2π (Mod(α(~ρ), 2π)). For an amplitude
S-CGH, the transmittance function is

T(~ρ) ¼ b
1
2π

(Mod(α(~ρ), 2π)), (40)

while for a phase S-CGH, it is

T(~ρ) ¼ ei~a
1
2π(Mod(α(~ρ),2π)): (41)

For an amplitude S-CGH, the efficiency of the nth order of
diffraction is

jτnj2 ¼
1
4
for n ¼ 0

1
4π2n2

for n = 0

8><
>: , (42)

while for a phase S-CGH, it is

jτnj2 ¼ (1þ e�2a2 � 2cos(a1)e�a2 )

[(a1 þ 2πn)2 þ a22]
: (43)

Figure 7 shows two features of a blazed profile for a phase S-CGH.
First, in the ideal case, maximum efficiency is reached when the
peak-to-valley distance is equivalent to a phase difference of 2π.
Second, by tuning the shape, it is possible to reach an efficiency of
almost 100% in one of the first diffraction orders (Fig. 8).

FIG. 6. jτ1j2 for a triangular profile plotted for a phase S-CGH as a function of
a1. As an inset is shown the three-dimensional profile. Here, “Ideal” means no
absorption (a02 ¼ 0), while for the “real” case we assumed a02 ¼ 0:07a01.

FIG. 7. Relative transmitted efficiency in the −1 diffracted order for a blazed
profile with (a02 ¼ 0:07a01) and without absorption (a02 ¼ 0). The maximum rela-
tive efficiency is reached for a1 � 2π, which means that when no absorption is
considered, ideal efficiency is obtained when the peak-to-valley phase difference
due to thickness is 2π. As an inset is shown in the three-dimensional profile.
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This profile is the only one that theoretically allows for the whole
transmitted wave to be directed to one of the first diffraction
orders.

If a blazed profile is not perfect and the grooves are more
similar to scalene triangles, then the transmitted intensity is no
longer concentrated in one of the first diffracted orders, but
spreads to others. This is usually visible when looking at a diffrac-
tion pattern of a real blazed hologram affected by fabrication limi-
tations. A more in-depth analysis regarding the optimization of a
real blazed phase S-CGH is described in Sec. IV A 3

5. Efficiencies of the profiles

The efficiencies of the profiles that have been described are
now compared, distinguishing between the amplitude and phase
S-CGHs. Efficiency is one of the critical parameters to consider
during the design of a synthetic hologram. Here, one histogram is
shown for each groove pattern, with the diffraction order on the
horizontal axis and the transmitted efficiency η(t)n on the vertical
axis. For ease of visualization, only orders between −5 and +5 are
shown.

a. Amplitude S-CGH. Figure 9 shows the intensity distribution
between diffraction orders for different profile shapes (sinusoidal,
squared, triangular, and blazed) for an amplitude S-CGH. The
central or zeroth order peak always has the highest efficiency. The
total transmitted intensity is never 100%, since the hologram
absorbs some incoming electrons. To a first approximation, if only
absorption from the opaque part is considered and that from the
supporting layer is neglected, the best performing shape is the
squared profile, for which 50% of the intensity is transmitted. The

worst performing shape is the blazed profile, for which only 33% is
transmitted.

b. Ideal phase S-CGH. Figure 10 shows the intensity distribu-
tion between diffraction orders for different profile shapes for a
phase S-CGH. The calculations have been carried out such that the
phase difference maximizes the intensity in one of the first two dif-
fraction orders. The zeroth order peak is always less intense than
the first orders. While the phase difference between peak and valley
can be tuned in a phase S-CGH, this is not possible for an ampli-
tude S-CGH, for which the zeroth diffraction order is always the
most intense. For an ideal phase S-CGH, in which absorption is
omitted, the total transmitted intensity is almost 100% for all of the
shapes considered here. Key values of efficiencies are reported in
Table IV.

F. Encoding both amplitude and phase in a synthetic
hologram

1. Encoding amplitude and phase in a phase
hologram

Unlike the other S-CGHs presented so far, which were
aimed at generating a desired wave function in all non-zero
diffraction orders (apart from a multiplicative factor for the
angular momentum), mixed holograms generate a desired wave
function in only one specific diffraction order. The method is
based on tuning the peak-to-valley phase difference in each
region of the S-CGH profile. This yields a local change in effi-
ciency, which changes the wave front phase at the exit of the
hologram, resulting in a change in the intensity of the beam. If
A(~ρ) and w(~ρ) are the amplitude and phase of a desired wave
function, B(~ρ) is a normalized bounded positive function of
amplitude, C(~ρ) is an analytical function of the amplitude and
phase profiles of the desired field, and Λ is the period of the
diffraction grating, then the profile to be fabricated takes the
form43

TMix(~ρ) ¼ exp iB(~ρ)Mod C(~ρ)þ 2πρθ¼0

Λ
, 2π

� 	� �
, (44)

where

B(~ρ) ¼ 1þ π�1sinc�1(A(~ρ)), (45)

C(~ρ) ¼ w(~ρ)� πB(~ρ): (46)

And sinc�1() is the inverse of sinc function in the interval of
[�π, 0]. Areas characterized by a full 2π phase shift contribute
to the amplitude of the +1st diffraction order, whereas other
areas spread intensity over other orders, limiting the intensity
of the 1st order. The beam of interest is generated with the
correct phase and amplitude information only in the 1st dif-
fraction order.

FIG. 8. Comparison between jτnj2 for different diffraction orders for the ideal
case of a blazed phase S-CGH and a “real case” with absorption. In the ideal
case, only the minus one order survives and all others ideally have zero inten-
sity. If absorption is considered, T is no longer unitary.
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2. Encoding amplitude and phase in an amplitude
hologram

The approach described in Sec. II E 1 for phase-only holograms
is based on the modulation of the peak-valley value. This modulation
locally varies the efficiency of the grating, and therefore, the amplitude
encoding. The same method can be used to achieve amplitude and
phase encoding using an amplitude hologram.

For the sake of simplicity, we start by considering a binary
mask (i.e., a rectangular profile) and first encode the phase,
before adding modulation to the width of the groove that is
related to the local efficiency of the hologram, as outlined in
Eq. (33).

In simple terms, the center of each groove is related to the
phase modulation, while the width is related to the amplitude of
the wave (as it can be appreciated in Fig. 11). Instead of a rectangu-
lar groove, one can choose any profile.

If a phase-only modulation is chosen such that
f (α)/ cos(kx þ α(~ρ)), then the center of the fringes corresponds
to the condition cos(kx þ α(~ρ)) ¼ 1. An amplitude modulation
can be achieved by substituting the 1 with a “bias” function of the
form cos(q(~ρ)), where q(r) is a function of the local desired effi-
ciency. The relation cos(kx þ α(~ρ)) ¼ cos(q(~ρ)) can then be used
to find the clipping points at the sides of the groove. Further
mathematical approaches based on this principle are possible (e.g.,
Ref. 44).

FIG. 9. Transmitted efficiency of diffraction orders n [ [�5, 5] for an amplitude S-CGH: (a) sinusoidal profile, (b) squared profile, (c) triangular profile, and (d) blazed
profile.
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This conceptual scheme can be extended to include ideas for
the phase hologram encoding of amplitude and phase, as seen
above. Furthermore, the above approach is more exact, as it
accounts for the amplitude modulation effect on the phase shift
and the phase effect on the amplitude.

G. Sampling effect and choice of groove shape

When deciding on the design of a hologram and particularly
on the groove shape, the practical problem of the limited number
of addressable or calculated pixels should be considered. Typically,

FIG. 10. Transmitted efficiency of diffraction orders n [ [�5, 5] for an ideal phase S-CGH: (a) sinusoidal profile; (b) squared profile; (c) triangular profile; (d) blazed profile.

TABLE IV. Transmission power function, n = ±1 square modulus of Fourier coefficients and transmitted efficiency for two kinds of S-CGH and all of the groove profiles consid-
ered here.

Profile shape T amp (%) jτ+1j2 (%)
jτ+1j2
T amp

(%) T phase (%) jτ+1j2 (%)
jτ+1j2
T phase

(%)

Cosinusoidal 37.5 6.25 16.67 100 33.86 33.86
Squared 50 10.13 20.26 100 40.53 40.53
Triangular 35.13 4.11 11.69 100 29.82 29.82
Blazed 33.3 2.53 7.60 100 100 100
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a hologram uses a square with between 1000 and 4000 pixels on
each side. Beyond 8000 pixels, it is computationally and experimen-
tally demanding to build an S-CGH. A typical groove is sampled
with npg ¼ 5 to 20 pixels. If the resolution in the groove position-
ing is given approximately by 1/npg , then the phase is defined to be
within 2π/npg . The resulting problem in phase shaping is greatest
for the rectangular groove, and to some extent, for the blazed
groove, as any discontinuity is defined by the size of the pixel. In
contrast, a sinusoidal groove has the advantage that each pixel
intensity defines the phase with no discontinuity. In other words,
even if the center of a groove is not defined by a single pixel, it can
be calculated with sub-pixel precision as a weighted position
average, whereas for a rectangular groove the phase is defined only
on a discrete grid. A falsely encoded phase profile can result in an
additional intensity between the diffraction orders in the holo-
gram’s Fourier transform. Under specific conditions, it is possible
to recognize many (npg) copies of the same beam. This effect is
related to the Talbot effect.45 A second point is the bandwidth of
the function to be encoded. The carrier frequency j~gj must be
larger than the bandwidth of the signal. For a sinusoidal pattern, at
least 4 pixels are needed per period. If the bandwidth is B, then
j~gj 
 2B and

np ¼ Kmax 
 8B: (47)

For the case of a vortex beam with a top hat amplitude cutoff, B �
a ‘ with a � 1/π, so for a beam with ‘ ¼ 1000, approximately 4000
pixels are required. A different groove shape could result in a differ-
ent maximum winding number for the vortex that can be gener-
ated. One should also consider the fact that a groove shape
depends on the fabrication approach. When using EBL, it is more
difficult to fabricate a groove that is not rectangular. Further details
about vortex beam generation and fabrication techniques are given
below.

III. PRODUCTION OF HOLOGRAMS: ELECTRON BEAM
LITHOGRAPHY AND FOCUSED ION BEAM MILLING

The final step of S-CGH production is the fabrication of the
designed pattern on a chosen substrate. The most common sub-
strate of choice is currently silicon nitride (Si3N4), while the two
fabrication techniques that are typically used to make S-CGHs are
focused ion beam (FIB) milling and electron beam lithography
(EBL).

A. Focused ion beam milling

FIB milling is a powerful tool for the fabrication of designed
patterns. A FIB instrument is used to generate a focused high-
energy beam of accelerated ions, which are then directed toward a
sample surface to remove material by sputtering. Although Ga ions
are the most widely used ions for this purpose, Au, Ir, Ar, He, Xe,
O, N, and Si ions are also available. A higher-atomic-number
element provides a higher milling yield, whereas a
lower-atomic-number element offers greater accuracy in reproduc-
ing the desired pattern. FIB milling exploits so-called knock-on
sputtering. For this to happen, the ion needs to be accelerated by a
potential in the 1–50 kV range.46 During FIB milling, an incoming
ion hits a surface atom and transfers part of its kinetic energy to it,
such that the atom is displaced from its equilibrium lattice position
and collides with neighboring atoms, which can result in their
release from the substrate. The incoming ion after several impacts
loses almost entirely its primary energy and can be trapped in the
target substrate, leading to ion implantation and a change in the
properties of the target substrate. Although FIB ions can themselves
also be exploited for imaging, so-called dual beam FIB instruments
include an SEM column, which can be used for non-destructive
electron imaging. Depending on the manufacturer of the FIB
machine, there are differences in the procedure for the fabrication
of an S-CGH. These differences are associated primarily with the
electronics and software that manage beam scanning and

FIG. 11. Example of encoding the amplitude and phase of a Laguerre Gauss beam (ℓ = 1, p = 0) in an amplitude hologram: (a) false color representation of the LG beam
(saturation represent the amplitude and hue represent the phase); (b) characteristic pitchfork amplitude hologram encoding the phase, and (c) the modulation of the groove
width giving the amplitude envelope.
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patterning. Most of the following discussion is based on the
authors’ experience with FEI (now Thermo Fisher Scientific)
instruments.

After an S-CGH is designed with the aid of a computer and
dedicated software, the resulting image can be fed directly to the
patterning software that comes with a dual beam machine, or it
needs to be converted in a file format that can be read by the soft-
ware. In the first case, the most common image file formats
are.bmp or.png; in the second case, vectorial (.dxf or.gdsII) or
stream files (.str) are used.

Generally speaking, any file format fed to the software will be
used to tell the FIB controller where to position the beam and how
long to stay at a certain position. A pixel position in the image is
converted to a position in the coordinate system of the beam con-
troller, while the pixel intensity is proportional to the time for
which the milling beam spends at that position, i.e., the dwell time.
This last parameter is what one can use to select between these
formats. Most of the aforementioned image files are 8-bit ones,
which means that the vertical milling resolution in the milling is
limited to 256 intensity levels. If higher fidelity in the profile shape
is needed, then a different file format is required. This usually
translates into the need to use vectorial file formats (.dxf or.gdsII)
or a direct coordinate and milling time file format such as stream
files (.str), where the resolution in z dimension is no longer a limit-
ing factor.

An additional distinction between image, vectorial, and stream
files is the order in which the points in the pattern are scanned. For
a picture or vectorial format, the FIB pattern handling software
allows a choice of scanning direction (e.g., line by line or column by
column, in different directions, or spiraling). In addition, all software
packages typically allow to choose the number of passes across the
sample. The total milling time can, therefore, be subdivided into
longer dwell time for fewer passes or shorter dwell time for more
passes. These aspects will be covered in detail later in this chapter.

1. Optional procedure: Au coating

In general, when performing an observation of a synthetic
hologram using low-angle diffraction, a central spot and additional
lateral spots can usually be identified. As outlined above, the
central spot in the Fraunhofer plane is referred to as the 0th diffrac-
tion order, whereas the lateral spots are non-zero diffraction orders
that arise from periodicities in the sample. The part of the electron
wave function that impinges on the S-CGH, which contains the
patterning periodicities, is diffracted and contributes to the intensi-
ties of the diffraction spots, i.e., electron holograms encoding the
wave function of interest. All parts of the wave function that
impinge on unpatterned areas in the surroundings of the S-CGH,
along with unscattered electrons and a contribution from non-ideal
S-CGH fabrication, will contribute to the intensity of the central
spot. In order to minimize the intensity contribution from sur-
rounding unpatterned areas which can suppress the contribution
from the S-CGH, it is possible to first deposit a thick (∼150 nm)
layer of Au by sputtering or evaporation, followed by FIB removal
of this Au layer only in the area where the S-CGH will be fabri-
cated. Although this procedure is rapid and straightforward, the
downside is an increase in the SiN surface roughness due to the

roughness of the Au coverage, which is subsequently projected
onto the SiN surface after Au removal by FIB milling. An alterna-
tive Au coating procedure using EBL, which is less straightforward
and more time-consuming, preserves the initial SiN surface rough-
ness but may leave residues.

B. FIB milling calibration

After the file format is chosen, the milling process requires cali-
bration to be able to mill reproducible patterns with a well-defined
groove depth, and in the case of phase S-CGHs, to obtain a desired
phase change. Several factors play a role in determining the milling
yield, including the beam current, dwell time, and the number of
passes. The calibration process requires to produce a series of simple
patterns, controlled by one of the source files described above, each
of which has the same size (i.e., number of pixels) but different
milling times and different real pixel sizes. For example, it is possible
to use a square-shaped pattern, in which half of the side is milled
twice as much as the other half, such as shown in Fig. 12(a).

The next step involves reproducing the pattern on a mem-
brane of known thickness. The milling time defined by the user
should be quite long since the process has to be manually stopped
once one side of the pattern (the white one in this case) completely
breaks [as in Fig. 12(e)]. A clear sign that the membrane is about
to break is the appearance of holes as in Fig. 12(d). By knowing the
total pattern size, the beam current, the milling time, and the phys-
ical size of each pixel, it is possible to determine the dose, and
therefore, the milling rate for that specific pixel size and current.
Figure 12 shows an example of such a procedure, in which the total
milling time is increased by changing the number of repetitions
while keeping the pixel dwell time at 10�4 s, illustrating (c) slight
bending, (d) local milling through, and (e) severe milling through
the membrane. In this way, the milling depth can be measured and
an estimate of the milling rate can be obtained.

Another critical parameter is the pixel size in the image or
stream file. The pixel size is the area every pixel from the image
will occupy on the substrate, and it is equivalent to the square of
the distance between neighboring pixels. The pixel area can be
varied in many ways. For instance, instruments controlled by a
Raith scan and control unit typically allow the user to choose the
pixel size once the pattern image is loaded, to modify the pattern
and to impose custom sampling conditions and milling mode on
the designed pattern. Instruments from Thermo Fisher Scientific,
instead, define the pixel position in the imaging reference frame.
Here, the pixel size is defined as the ratio between the desired
S-CGH diameter (in nm) and the pixel-to-pixel distance (or
step-size) times the CGH lateral solution. This means that, for
example, the pixel size of a S-CGH of 50 μm fabricated starting
from a CGH of 1024� 1024px and step-size of 2 is

pixel size ¼ S� CGH diameter
(step size)(CGH lateral resolution)

¼ 50 000 nm
2� 1024

� 24:41 nm: (48)

Moreover, since the pattern to be reproduced is shown in the
FIB imaging reference frame, it does not scale by changing the
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magnification (differently with respect to the software-defined pat-
terns), then for the same pattern, the choice of magnification leads
to different pixel sizes.

This information can be used as a starting point for pattern
milling aimed at achieving the desired phase shift. Greater accuracy
in the calibration may be achieved by repeating the procedure
using different pixel sizes and ion beam currents. The calibration
should, in principle, be valid while the ion beam aperture, which
defines the beam current and spot size, remains unchanged.

This method is effective for determining the milling rate. By
increasing the number of tests, it is possible to decrease the error
statistically. As a rule of thumb, we repeat the procedure four to six
times for each ion current that will be used for patterning.

Apart from ordinary surface profilometry using methods such
as atomic force microscopy, complementary TEM measurements
can help to improve the fabrication depth accuracy and to examine
if a fabricated S-CGH works appropriately. These methods include
low-angle diffraction (LAD), energy-filtered TEM (EFTEM), and
low magnification off-axis electron holography; Whereas, LAD is
available on most modern TEMs and can easily be used to achieve
camera lengths of 1.4 km; EFTEM and low magnification off-axis
electron holography are less commonly used. The first method
requires an energy filter. The second method requires a biprism
and the use of free lens control, which can damage the biprism if it
is performed carelessly.

By fabricating a series of diffraction gratings that are identical
to each other apart from the overall milling time, it is possible to
estimate the correct milling time by comparing the diffraction
intensity using LAD. For example, for an S-CGH with a sinusoidal
modulation, the intensities of the central spot and the first order
diffraction peak will depend on whether it has been properly
milled. It is good practice to start with larger variations in milling
time to be able to assess a wide range of parameters. Subsequently,
the process should be refined using a smaller range of parameters.
As a rule of thumb, such a process needs two to three iterations to
find the best milling time and is therefore time-consuming. Before
a good calibration is achieved, at least seven to ten patterns need to
be optimized by changing the pixel size or milling current from

one run to another. Furthermore, care should be taken to avoid a
2π ambiguity in the fabrication of a phase S-CGH when a large
range of thickness values is explored.

EFTEM mapping is a complementary technique, which can be
used to provide real space thickness information about the pattern.
This technique exploits inelastic interactions between incident elec-
trons and the sample, with scattered electrons losing a small
amount of energy that can be measured using an energy filter. The
proportion of electrons that have undergone inelastic scattering
compared to electrons that have undergone elastic scattering or any
scattering at all, can yield a value proportional to the local thickness
by using the log-ratio method.10 This value, multiplied by the elec-
tron mean free path, provides the local thickness, which can be
compared to the intended thickness. In this way, it is possible to
reconstruct an x-y map with additional thickness information. As
the thickness determines the phase shift, it is possible to use the
resulting thickness map in computer simulations of electron beam
propagation to understand how the hologram’s phase and ampli-
tude information influence the details of LAD patterns.

The use of low magnification off-axis electron holography as
an alternative method to validate the quality of a S-CGH and to
calibrate the FIB machine requires setting up the TEM in a non-
standard configuration. This technique allows the phase and ampli-
tude of a large region of interest of a sample to be measured
directly. The region of interest is usually limited to 30 × 30 μm2 and
the approach requires the milling of a large window near the
S-CGH for the reference wave. A linear gradient may need to be
removed from the recorded phase image during post-processing.

It is necessary to point out that the calibration process needs
to be repeated every time the substrate material for the S-CGH is
changed. If more complex patterns are required, then the methods
can provide valuable information for their fabrication. It is advis-
able to carry out a new calibration for every new pattern or experi-
mental condition if high accuracy is required.

Figure 13 summarizes the fabrication process of an S-CGH
using FIB milling. It also provides an intuitive recipe for calibration
of the FIB machine. For simplicity and clarity, only the main steps
are shown.

FIG. 12. (a) Representative calibration pattern image where white corresponds to a pixel of maximum intensity, i.e., to the longest dwell time, while black corresponds to
“zero” intensity, i.e., to no milling (gray has half the value of white in this case). (b), (c), (d), and (e) are SEM images illustrating the fabrication of the pattern shown in (a)
on a Si3N4 membrane. The white scale bar is 10 μm long. From (b) to (e), the total milling time and the number of repetitions were increased linearly. The pixel size was
∼30 nm, the ion current was ∼104 pA, and the accelerating voltage was 30 kV. Low electron energy was used to enhance surface sensitivity during imaging.
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C. Optimization of FIB milling pattern reproducibility

Once the milling process has been calibrated, it is possible to
start S-CGH fabrication. The calibration process focuses on esti-
mating the milling rate of the FIB instrument, while the optimiza-
tion process is used to fine tune the parameters to achieve an
optimal result. Parameters that can be optimized include beam
current, pixel size, distance and dwell time, the number of passes
or repetitions of the pattern, and the scanning strategy. Even the
membrane thickness before S-CGH milling will influence the
result. This section contains some tips and tricks.

1. Optimization of ion current

The choice of the ion current is related to the choice of ion
probe size, which ultimately defines the hologram resolution. The
primary parameters that should be considered are the total milling
time and the pixel size. The pixel size is related to the intrinsic res-
olution of the S-CGH, with finer details in the profile requiring a
smaller pixel size. In general, a higher pattern resolution is desir-
able. However, there is a limit to how small the pixel size can be,
since a resolution that is too high or hologram area that is too large
can result in a file whose size cannot be handled by the patterning
software, while a pattern resolution that is higher than the milling
resolution will not be reproduced properly in the S-CGH.

A Ga ion source on a high-end instrument, at the lowest
current, can have a spot size of approximately 5 nm or less.
Although the size scales as the square root of the current, the pat-
terning resolution also depends on other factors, such as the local
milling time or instabilities, resulting in a larger effective spot size.
A lower current is needed for higher resolution, at the cost of a
longer patterning time as the sputtering rate depends on the
current. However, long continuous patterning times have a higher
probability that a drift of the stage or a beam defocus may occur.
Although these effects can be reduced by using machines with
interferometric stages and higher beam stability, normally a trade-
off between ion current and total patterning time must be found.

As a rule of thumb, patterning times longer than two hours are not
recommended. For these reasons, the current should be chosen
carefully to achieve the best resolution for a reasonable patterning
time.

2. Optimization of dwell time, repetition number, pixel
distance, and scan direction

The local milling time, or dwell time, is one of the parame-
ters that can be optimized alongside the pixel distance (if avail-
able), the number of repetitions and patterning strategy, or scan
direction. The dwell time influences the final shape of a milled
pattern. Figure 14 shows an example of a box pattern, which illus-
trates the difference between using short dwell times with many
repetitions and long dwell times with few repetitions, for the
same total dose. The former approach [Fig. 14(a)] results in a rec-
tangular box profile with mild redeposition on the sidewalls,
while the latter approach [Fig. 14(b)] results in a sloped profile
with redeposition effects along the horizontal direction of the ser-
pentine scan.46

The use of too many repetitions can also be detrimental. A
drift of a few nm can occur during the “homing” phase at the end
of a repetition, though rarely, a small drift of a few nanometers can
occur, leading to smearing of the end result. A trade-off between
the number of repetitions and the dwell time is required, while
avoiding the use of long dwell times and large numbers of
repetitions.

The pixel-to-pixel distance can determine the amount by
which adjacent pixels overlap. Clearly, the use of a very large
pixel-to-pixel distance (i.e., a highly negative overlap) is detrimen-
tal, as the end result is a dotted pattern. Conversely, the use of a
very short pixel-to-pixel distance increases the patterning time and
file size. A −50 to 50% pixel overlap is ideal in the production of
S-CGHs; however, pixel-to-pixel distance does not affect as much
the final resolution of the S-CGH as other factors (primarily the
ion current, i.e., the probe size).

FIG. 13. Schematic diagrams showing the typical steps in the fabrication of an S-CGH using FIB milling: (a) Fresh device; (b) Au evaporation; (c) Au removal and FIB pat-
terning; (d) Grooves in the membranes; (e) Simple algorithm for the calibration process.
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The “scanning strategy” determines the path that the beam
follows. The most common approach involves the use of zig-zag
scanning, as shown in Figs. 15(a) and 15(b). An alternative
approach involves spiral patterning, as shown in Fig. 15(c).47 It is
important to use the best possible scanning strategy because the
scanning direction and path contribute to determining where the
material is redeposited. For zig-zag scanning, redeposition is
mainly found on the opposite side to the scanning direction, as
shown in Fig. 14(b). If long rows are being patterned, it is then sug-
gested to scan the beam along the rows instead of perpendicular to
them. For spiral scanning, the continuous “back and forth” motion

should allow for a “cleaner” result. However, only few examples
have been presented in the literature.47

D. EBL for S-CGH

EBL usually requires a series of steps and controlled processes
to achieve a final result, but can be used to produce features as
small as a few nm and to mass-produce S-CGHs. The typical work-
flow for the production of an S-CGH is shown in Fig. 16. In this
case, a negative resist is used. It is also possible to use a positive
resist together with reactive ion etching to transfer the pattern,
however, it usually leads to poorer results.

Calibration procedures are also needed for EBL. These are less
time-consuming when using a negative resist such as hydrogen sil-
sesquioxane (HSQ), which polymerizes into SiOx when illuminated
by an electron beam and has a mean inner potential similar to that
of Si3N4. A standard procedure for selecting the dose involves cre-
ating a dose matrix of small features of the pattern that one wants
to reproduce. The milling rate does not need to be considered in
this case, since the resist thickness dictates the peak-to-valley
height.

The steps required for preparing an S-CGHs using EBL can be
summarized as follows. First, a layer of negative resist is spin-coated
on the TEM membrane, patterned into the desired S-CGH enclo-
sure shape and developed. A layer of Au or any other metal (with a
high atomic number) is evaporated onto the device, with the metal-
lic layer used to block a portion of the incoming beam. The use of
an adhesion promoter of Cr or Ti is encouraged before depositing
the metal of choice. The device is then immersed in a resist
remover to achieve lift-off of the metallic layers that were on the
previously developed resist, in order to prepare the canvas for the
S-CGH. HSQ or another resist of choice can now be spin-coated to

FIG. 14. SEM image (tilted view) of a box pattern milled using: (a) A short
dwell time and many repetitions; (b) A long dwell time and few repetitions. The
serpentine beam scan is shown using a red line.

FIG. 15. Examples of patterning strategies: (a) and (b) show two different strategies for the zig-zag scanning, while (c) shows the less commonly used spiral scanning
strategy. The distance between symbolic pixels has been increased for the ease of visualisation.
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a desired thickness, patterned, and developed. At this point, a few
nm of metal or amorphous C can be flash-evaporated onto the
developed pattern to balance the generation of secondary electrons
in the TEM. More details about the fabrication process and the
steps and exact parameters can be found in the paper by Mafakheri
et al.48 and many others related to the EBL technique.

Limitations of the EBL technique include the fact that the
thickness is fixed, so one needs to fine-tune the spin coating
process to achieve the required thickness for the phase shift. In
addition, the pattern profile is either squared or sinusoidal and it is
difficult to achieve a blazed profile. Most importantly, multiple
steps are required to complete the process and the final devices are
small and fragile, meaning that they have to be handled carefully
during processing. However, the advantages of EBL are manifold.
The Si3N4 membrane thickness can be reduced to only 15 nm as it
is only a supporting layer, whereas for FIB milling, it is normally at
least 75–100 nm before patterning. The use of a thinner membrane
reduces inelastic scattering, background noise, and absorption. It
also allows the use of a lower electron dose during patterning and
results in the generation of fewer secondary electrons in the resist-
supporting substrate, opening up the possibility to achieve
sub-10-nm-sized features, if the process is well optimized.

Even for EBL-fabricated S-CGHs, it is possible to adjust the
fabrication procedure to obtain finer details. As a result of the large
number of steps, a tedious process of trial and error may be
required. Examples of possible improvements include

• changing the pre-patterning baking temperature or adding a
post-pattern baking step;

• searching for the proper dose and using proximity correction;
• adjusting the development temperature and time, as some resists
provide higher contrast when they are developed at a lower tem-
perature for longer than at room temperature,49 while others
behave in a similar manner when developed at higher
temperature;50

• developing an understanding of the chemistry of the resist to
find an optimal developer; and

• test the different thicknesses of silicon nitride or other support-
ing layers.

Some of the inherent limitations of EBL and FIB milling have
recently been overcome by using a thermal scanning probe instead
of an electron probe for patterning, resulting in higher accuracy
and greater control in patterning depth and morphology.51

E. Experimental limitations of the use of synthetic
holograms in microscopy

The use of S-CGHs can be effective for the realization of com-
plicated phase patterns for wave front control. However, their
primary drawback is that they are static. Their exchange with a dif-
ferent one in the aperture plane of the microscope usually requires
the breaking of the vacuum of the microscope column. Alternative
approaches, such as the use of multipoles of spherical aberrations
correctors,52 electrostatic fields,16 or programmable phase
plates53,54 are still far from reaching the same level of arbitrary
wave shaping with a similar number of pixels. Thin synthetic holo-
grams are therefore still preferred for many experiments where a
well-known effect is sought for, despite the fact that they require
the insertion of additional material in the electron beam path,
which can result in (1) inelastic scattering and decoherence; (2) a
reduction in beam intensity; (3) contamination, damage, and aging
of the device as a result of electron beam exposure; and (4) charg-
ing of the device during operation.

It should also be noted that the use of thin membranes as pat-
terning media for S-CGHs typically suffers from local thickness
variations on a scale of a few nm, resulting in a “frosted glass”
effect that is similar to the effect on light crossing a turbulent or
inhomogeneous medium. Even the elastically scattered part of the
electron beam will therefore have a lateral spread in momentum
due to the membrane. Furthermore, different forms of inelastic
scattering will reduce the beam current and increase the lateral
distribution.

Over time, the beam alters the groove profile from the
desired phase profile. This effect is more significant if the syn-
thetic hologram is in the condenser plane, where the electron
beam current is higher. Experimentally, the quality of a synthetic
hologram is found to deteriorate quickly due to contamination
(local C deposition can form in only a couple of days). In con-
trast, damage (e.g., from knock-on effects and irradiation) tends
to be slower, with minor profile alterations becoming apparent
after one week of intensive use. It is, therefore, important to take
care of vacuum quality in the TEM column and to be careful
during operations such as sample exchange to decrease the proba-
bility of contamination. It is also important to avoid

FIG. 16. Schematic diagrams showing: (a) A fresh device; (b) EBL and a devel-
oped (negative) resist, (c) Au evaporation, (d) lift-off and HSQ spin coating, (e)
EBL, and (f ) developing the HSQ.
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concentrating the electron beam to a spot on the S-CGH during
any phase of operation. The most serious problem is potentially
charging, in particular, because SiN is an insulating material,
from which it can be difficult to dissipate the charge generated by
the electron beam. As mentioned above, most of the membrane
onto which the S-CGH is patterned is covered by a relatively
thick Au layer that allows to dissipate the charge and the elec-
trons only pass through the transparent area of the S-CGH.
Whereas, the Au layer is efficient in removing charge and par-
tially blocking the beam; the problem can persist in the uncovered
area. Experimentally, in the steady state, synthetic holograms are
often found to develop a charge density distribution that results
in an approximately parabolic projected potential profile, which
in turn adds a focusing effect to the hologram phase. It is possible
to compensate for such an effect by using microscope lenses.
However, the required compensation can depend on the electron
dose, i.e., the higher the dose, the greater the effect. Furthermore,
when using large synthetic holograms and unfavorable materials
such as HSQ, a steady state is sometimes never reached and the
additional phase contribution may vary over time. Possible solu-
tions to this problem include the use of more conductive materi-
als such as C, or coating both surfaces of the S-CGH with a thin
layer of metal or C. The use of thinner synthetic holograms is
also helpful. An alternative approach involves using amplitude
S-CGHs, which are virtually all conductive. An example of this
approach can be found in the paper by McMorran et al.55 and
Fig. 17(a) shows a CGH of a similar design to the one that they
used to realize their amplitude synthetic holograms. As the pres-
ence of thin material bridges exposed to vacuum makes such
structures mechanically unstable and difficult to fabricate, the
structure can be strengthened by substituting the separate lines
with a cross-grating. The diffraction orders are then dispersed in
two directions, with an overall reduction in the efficiency of the

order of interest and greater difficulty in isolating the desired
beam, as shown in Fig. 17(b).

IV. EXAMPLES

A. Phase S-CGH design for the generation of electron
beam vortices carrying orbital angular momentum

The generation of electron vortex beams (EVBs) was first
demonstrated in 2009 and 2010 by three groups. The approaches
involved using “spiral phase plates” constructed from thin films of
graphite56 and S-CGHs with pitchfork designs.34,57 In some of the
first experiments, EVBs were generated using amplitude S-CGHs or
similar structures. Since then, most research groups have used
phase or mixed amplitude-phase S-CGHs, which have higher effi-
ciencies. New methods for the generation of EVBs have been pre-
sented15,58,59 and the topic has matured sufficiently that most
efforts are directed toward the measurement of OAM values and
increasing applications in the fields of plasmonics, studies of mag-
netic materials, and chiral structures such as proteins. In a circular
symmetrical reference system, an EVB has an angular-dependent
helical phase term, which can be described by the expression

w(l, θ) ¼ ‘θ, (49)

where ‘ is the OAM eigenvalue of the Schrödinger equation solved
in cylindrical coordinate (also known as the topological charge or
OAM quantum number) and θ is the angular coordinate (corre-
sponding to the azimuthal angle). The wave function of a generic
EVB is then given by the expression

Ψhelical ¼ A0e
i‘θ: (50)

FIG. 17. (a) Example of an amplitude CGH with a grid-like structure for improved mechanical stability and (b) The resulting diffraction pattern, which forms a two-
dimensional array of beams.
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Some of the most prominent strategies for creating EVBs are
described below. Further details about EVBs and vortex beams, in
general, can be found elsewhere.40,55,60–62

1. Spiral design

The simplest way to generate an EVB using a S-CGH is to
design an in-line24,63 phase S-CGH that has a spiral/ helical form,
similar to that shown in Fig. 3, in which a smoothly varying thick-
ness profile is used to tune the phase shift imprinted on the wave
front of the outgoing beam.

This design, in its simplest form, is an inline S-CGH and its
realization requires good control of the fabrication process for the
reasons outlined in Secs. III and IV. However, a well-calibrated
machine makes fabrication straightforward. An EVB with topo-
logical charge ‘ can be generated using a spiral phase plate in
which the total phase shift over a complete revolution is
Δw ¼ ‘ � 2π.

A typical design of an EVB with a spiral phase is shown in
Fig. 18(a), with phase ramps in six angular sections, in each of
which the phase shift goes from 0 to 2π. The outgoing EVB, there-
fore, carries an OAM value corresponding to ‘ ¼ 6.

This design allows a superposition of EVBs to be generated. A
beam that is generated from two superimposed and has no azi-
muthal current is referred to as a “petal beam.” For example, a

phase S-CGH can be used to generate an electron beam corre-
sponding to a coherent superposition of ‘ ¼ �5 and ‘ ¼ þ5 by
summing the wave functions for EVBs with ‘ ¼ 5 and ‘ ¼ �5, and
calculating the phase of the resulting wave function.
Mathematically, the phase is Δw ¼ arg(sin(l θ)), corresponding to
alternating values of 0 and π. Figure 18(d) shows the phase of a
beam that carries a superposition of two beams with ‘ ¼ +5, with
white corresponding to a phase shift of π with respect to black
areas. For a generic EVB generator with a spiral design, the enclo-
sure is a circle just as for a conventional aperture and the physical
dimension is typically 10� 50 μm.

2. Pitchfork design

A pitchfork design can be used for both amplitude56 and
phase48 off-axis S-CGHs, with EVBs generated in the nth diffraction
order, where n can vary from 1 to infinity. The design is based on
an interference pattern between a plane wave Ψ ¼ A0ei(kxxþkzz) and
a helical wave in the z ¼ 0 plane, in the form

I ¼ 2jA0j2(1þ cos(kxx � ‘θ)), (51)

from which it is possible to find the phase term of the interference
wave to design the pitchfork S-CGH. As described in Sec. II E 1, in
order to generate a pitchfork S-CGH, the argument of the profile

FIG. 18. (a) The phase of an EVB used to fabricate a phase-S-CGH with a spiral/ helical design for EVB generation for l = 6ℏ. The phase varies from 0 (black) to 2π
(white) and goes from 0 to 12π over a complete revolution. (b) SEM image of a phase S-CGH corresponding to (a). (c) Experimental EVB in the Fraunhofer plane. (d)
Phase and (e) phase S-CGH for a petal beam obtained from the coherent superposition of two EVBs with ‘ ¼ 5 and ‘ ¼ �5. (f ) Experimental Petal beam in the
Fraunhofer plane.
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function is

α(x, y) ¼ ‘θ þ 2πx, (52)

where x is one of the two in-plane coordinates, θ ¼ ArcTan y
x

� �
and ‘ is the topological charge. The planar Cartesian coordinates x
and y are expressed in units of the grating spatial period Λ.

Figure 19 shows the bi-dimensional profile functions f (α) for
a pitchfork design with ‘ ¼ 2. Each pattern is obtained by combin-
ing the generic profile functions described in Sec. II E 4 and
Eq. (52), such that

• fsqrd(α) ¼ 1
2 (1þ Sign(sin(‘θ þ 2πx ))) [Fig. 19(a)],

• fcos(α) ¼ 1
2 (1þ cos(‘θ þ 2πx )) [Fig. 19(b)],

• ftrian(α) ¼ 1
π (Sign(sin(‘θ þ 2πx)))(π �Mod(‘θ þ 2πx, 2π))

[Fig. 19(c)],

• fblzd(α) ¼ 1
2π (Mod(‘θ þ 2πx, 2π)) [Fig. 19(d)].

This design is versatile, as it can be used to generate both
low-OAM and high-OAM EVBs. However, in the latter case, the
features in the central part may be so small (in some cases even
smaller than a pixel) that they are almost impossible to reproduce
using either of the fabrication techniques discussed above. A
common strategy involves masking out the central part up to a
chosen radius. Although such a mask reduces the transmitted effi-
ciency, an EVB with the correct OAM value is generated.48

3. Case study: Optimization and understanding of a
blazed phase S-CGH with a pitchfork design

In recent years, we have worked on optimizing the fabrication
process of a blazed phase S-CGH using FIB milling, in particular
for a pitchfork with ‘ ¼ 1.32 We have aimed at reaching the highest

FIG. 19. Designs of a pitchfork S-CGH with ‘ ¼ 2 for (a) squared, (b) cosinusoidal, (c) triangular, and (d) blazed designs. The color bar represents the value of f (α) at
the position of each pixel.
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diffraction efficiency for one of the two first diffraction orders
(100%; see Table IV) by converging most of the intensity in the
beam carrying the desired amount of OAM.

In order to reduce the number of variables, most parameters
were kept constant, with only the number of passes and the
maximum dwell time changed to tailor the phase shift and
approach 2π. First, the number of passes was varied for rough opti-
mization, then the maximum dwell time was optimized for finer
optimization. The parameters that were kept constant and their
values are given in Table V.

Figure 20 shows the CGH and the best-performing fabricated
S-CGH. The patterning parameters for best performance, other
than those reported in Table V, are

• Number of repetitions: 8 passes.
• Maximum dwell time: 91:6 μs.

These numbers can vary between both FIB machines and fab-
rication sessions, as factors such as laboratory environment,
vacuum quality, and machine characteristics can influence the fab-
rication process.

The EFTEM image and line profile in Figs. 20(b) and 20(c)
show that the in-plane periodicity of the pattern is �600 nm and
the distance between peak and valley is �70 nm. This is slightly
larger than the required value, which is �64 nm for 300 keV

electrons, as reported in Table II. The shapes of the peaks approxi-
mate the ideal shape of a blazed profile, but differ slightly from one
another, with sharp troughs but blunter peaks. These effects show
some of the limitations of using FIB milling and contribute to the
measured reduction in diffraction efficiency. Figure 21 shows that
the best-performing sample was able to achieve 66:22% of the
transmitted intensity in the +1st diffraction order, with the experi-
mental diffraction intensity distributed between the orders in a dif-
ferent manner from that observed in Figs. 8 or 10(d).

We used simulations to assess the origin of this behavior.
First, we examined the effect of a non-ideal peak-to-valley phase
difference by recalculating the intensity distribution for a +10%
phase mismatch from an ideal phase S-CGH. Figure 22 shows that
even a 10% mismatch has almost a negligible influence on the dif-
fraction intensity distribution, suggesting that the intensity distribu-
tion measured experimentally has a different origin. Although
absorption affects the diffraction intensity, as shown in Sec. II E 4
and Fig. 8, it mainly decreases the total transmitted intensity, redis-
tributing it almost evenly between the orders.

Even by considering the effect of both the absorption and the
phase mismatch, it is still impossible to reproduce the same intensity
distribution. We then focused on the profile shape of the S-CGH.
Figure 24(c) shows that the actual shape is closer to a scalene triangle
than to a blazed one. The scalene triangular profile function is

g(α) ¼
Mod

1
s
α(~ρ), 2π

� 	
for α(~ρ) , s,

1þ s
(2π � s)

�Mod
α(~ρ)
2π � s

, 2π

� 	
for s 	 α(~ρ) , 2π:

8>><
>>:

(53)
This profile function is normalized between 0 and 1 and has its

maximum for α(~ρ) ¼ s. The further s is from 0, the more it differs
from an ideal blazed profile. Figure 23 shows the intensity distribution
for s ¼ 1:1. Although the shape difference was accentuated by choos-
ing a high value of s, it is likely to be imperfect in the profile shape,
including small differences between the shapes of adjacent “teeth,”

FIG. 20. (a) CGH for a blazed ‘ ¼ 1 pitchfork, (b) EFTEM thickness map of the fabricated S-CGH, and (c) profile of the region marked by a blue rectangle in (b).

TABLE V. Patterning parameters that were kept constant during the optimization of
the fabrication of the ℓ = 1 blazed phase S-CGH. The fabrication process was
carried out on a FEI strata DB235M FIB-SEM equipped with a Ga+ source.

S-CGH
diameter

Ion
beam
current

Ion beam
accelerating
voltage

CGH
resolution

Step
size

Effective
pixel size
of the
S-CHG

20 μm ∼260
pA

30 kV 1024 ×
1024 px

2 9.8 nm
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which lead to the spreading of the diffraction intensity between the
orders.

In summary, we have been able to model and discover the
main factors that limit the operation of a real blazed phase S-CGH.
Most of them are related to the limitations of the fabrication
process. Imperfections of the shape and the phase mismatch
usually result from the instabilities of the FIB machine.
Optimization of the lateral resolution of the FIB machine is likely
to bring the greatest improvement. Even a stage shift of only a few

nm (for thermal or mechanical reasons) during the fabrication pro-
cedure can compromise the result. It may be possible to reduce
some of the limitations by using a FIB machine that is designed for
S-CGH production or by rethinking the fabrication steps. For
example, it has been shown that gas-assisted FIB milling can
improve the reproduction fidelity and patterning speed of blazed
profiles.64 However, some effects that arise from inelastic and
diffuse scattering, including absorption and background noise, will
always be present.

4. Generation of EVBs using Gaussian beams

The vortex beam generators that were described above are
characterized by a hard aperture in the hologram plane. The result-
ing beams are sometimes referred to as “hypergeometric beams.”65

In light optics, a more suitable class of vortex beams has been
derived based on a member of the Gaussian beam family: so-called
Laguerre–Gaussian (LG) beams. Exact Gaussian beams are charac-
terized by flat phase wave fronts at z ¼ 0 and well-defined ampli-
tude structures, with planes perpendicular to the optical axis that
are equiphase surfaces. An in-depth mathematical description can
be found in the book by Guenther.66 An important parameter is
the Gouy phase term, which is related to the transverse confine-
ment of the beam and introduces anomalous behavior in the phase
of the beam when it passes through the focus.67–70 In a TEM, an
exact Gaussian beam or a coherent Gaussian beam cannot be
obtained easily. In fact, while in a TEM, the source emission inten-
sity shape at the early crossover is typically Gaussian, this shape is
an effect of partially coherent superposition of beams. Moreover, if
the beam extent is limited by apertures, these generate diffraction
effects that ruin the Gaussian intensity profile. However, it is still
possible to generate a Gaussian-like beam that reproduces the
intensity of an exact beam by converging the beam.

FIG. 21. Experimental distribution of diffraction intensities in the best-performing
sample, with the total intensity normalized to unity.

FIG. 22. Diffraction intensity distributions for phase mismatches of (a) �10% and (b) þ10%. The insets show the corresponding groove profiles.

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 131, 031101 (2022); doi: 10.1063/5.0067528 131, 031101-25

© Author(s) 2022

https://aip.scitation.org/journal/jap


Laguerre–Gaussian beams are of greater interest than simpler
Gaussian beams as they are solutions of the paraxial Helmholtz
equation in cylindrical coordinates and are eigenstates of both the
Fourier transform operation and OAM. In this way, they form a
complete orthonormal basis characterized by two discrete quantum
numbers p and ‘, where ‘ is the azimuthal index or topological
charge of OAM and p is a radial index, which defines the ( pþ 1)
radial nodes in the intensity distribution. The wave function of a
LG beam has the form71

ψp
LG ‘ (ρ, θ, z, t)¼

C‘pzRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2Rþ z2

q ffiffiffi
2

p
ρ

w(z)

� 	j‘j
Lj‘jp

2ρ2

w2(z)

� 	
exp(i(kzzþ ‘θ�ωt))

�exp � ρ2

w2(z)
þ ikz

ρ2

2R(z)

� 	
exp(�i(2pþj‘jþ1)ξ(z)),

(54)

where Lj‘jp is the generalized Laguerre polynomial,57 C‘p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j‘jþ1p!

(π(j‘jþp)!)

q
is a normalization factor, w(z) ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

zR

� �2r
is

the beam waist radius along the propagation axis z, w0 is the beam

radius in focus, zR ¼ kzw2
0

2 is the Rayleigh range, ξ(z) ¼ arctan z
zR

� �
and R(z) ¼ z 1þ zR

z

� �2h i
is the radius of curvature of the complex

wave front.
It is possible to demonstrate that the evolution of this kind of

Gaussian beam along the optical axis is related only to the Gouy
phase exp(�i(2pþ j‘j þ 1)ξ(z)) and w0, which makes it
diffraction-shape-invariant, evolving only by the scale factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

zR

� �2r
. This is a weaker condition for diffraction invariance

than for Bessel beams, which are described in Sec. IV C, the differ-
ence being that Bessel beams are non-normalizable, and therefore,
not exactly realizable experimentally. A series of simulated LG
beams with varying indices are shown in Fig. 24.

LG beams are of interest to scientists working on magnetic
materials and structured waves. For example, a LG wave function is
functionally similar to a Landau state wave function.72 By tuning a
LG beam waist, it has been demonstrated experimentally that it is
possible to couple them to Landau states.73 Even though the gener-
ated LG beams were not pure, this experimental proof opens the
possibility of observing transitions between the states. Furthermore,
a LG beam has been used to demonstrate that it is possible to use
paired S-CGHs for almost direct phase retrieval of EVBs (and of
structured beams in general) in the Fraunhofer plane.74 Pure LG
beams are ideally generated using mixed S-CGHs,75 as described in
Sec. II F 1. The design and fabrication of mixed S-CGHs are
reported in Fig. 25 for two experimental examples of LG beams
with different characteristics. The first example [Figs. 25(a)–25(d)]
shows a pure LG10

0 mode that has a simple circular structure. The
second example [Figs. 25(e)–25(g)] shows two states with different
OAM and p quantum numbers coherently summed together to
give a superposition of LG modes with different radial and azi-
muthal indices. The phase in Fig. 25(f), which is the theoretical
phase obtained by Fourier transforming the thickness profile of the
hologram, illustrates the complexity of the beam. It can be consid-
ered as a proof of the power of amplitude and phase encoding in a
single S-CGH for Laguerre–Gauss beam generation, and in general,
EVB generation. In Fig. 25(d), there are no intensity ripples similar
to those present in EVBs generated using a spiral design, as
described in Sec. IV A 1. LG beam generation using different tech-
niques has also been reported.76

LG beams are solutions of the paraxial Helmholtz equation in
cylindrical coordinates, whereas Hermite–Gaussian (HG) beams

FIG. 23. Diffraction intensity distribution for a scalene triangular profile for
s = 1.1. The inset shows a groove profile for 1 period.

FIG. 24. Examples of Laguerre–Gauss beams with varying indices. The intensi-
ties and phase shifts of the wave functions are represented by their brightness
and hue, respectively.
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are solutions of the same equation in Cartesian coordinates.77

Although HG beams do not carry OAM, the first vortex beams
generated by Allen et al. in 199277 were obtained by using a
cylindrical lens to transform high-order HG modes into LG
modes. In a TEM, it is possible to reproduce the effect of a cylin-
drical lens by increasing astigmatism. This approach has been
exploited by Schattschneider et al.78 to measure the OAM of an
EVB and to measure the azimuthal (and radial) state for exact
LG states.

B. Design and realization of a holographic OAM sorter

An interesting application of synthetic electron holograms is
the development of a device that can be used to measure the OAM
spectrum of an electron beam, referred to as an OAM sorter.79,80

This device is composed primarily from two S-CGHs: an “unwrap-
per” S-CGH that unwraps an OAM-carrying electron beam and a
“corrector” S-CGH that corrects the phase distortion introduced by
the first S-CGH. The incoming electron beam contains the phase
information of interest, after having interacted with a sample. The
most straightforward example of an OAM-generating sample is the
in-line S-CGH described in Sec. IV A 1. Figure 26 provides a sche-
matic representation of the setup and transformations involved,
including OAM generation, unwrapping, correction, and detection.
In Fig. 26, an electron beam impinges on a generator S-CGH and
is endowed with a spiraling phase shift with OAM= 1, correspond-
ing to a 2π phase shift along one complete azimuthal path. The use
of an in-line S-CGH simplifies the alignment of the beam on the
sorter and excludes the effect of tilt (and off-axis aberrations).

The electron beam that is carrying OAM is directed onto the
unwrapper S-CGH, which performs a conformal transformation
from log polar to Cartesian coordinates. In this way, the phase
information is unwrapped from an azimuthally varying arrange-
ment to a linear arrangement, so that it is aligned along one
Cartesian coordinate. The first S-CGH, or sorter 1 element, is a dif-
fractive hologram. Therefore, the resulting pattern is found in a
reciprocal plane. This unwrapping operation introduces a strong
phase gradient. After the transformation, this additional phase
must be removed. Therefore, the corrector is needed as an addi-
tional off-axis S-CGH. The final OAM spectrum is found in recip-
rocal space. After this correction operation, the OAM value can be
found as an intensity spot, whose position from the center of the
first diffraction order in reciprocal space is indicative of the magni-
tude of its OAM value. A calibration procedure using different
OAM-generating S-CGHs with known OAM values is required, as
each electron-optical configuration can introduce changes in rota-
tion and magnification. Once a device is calibrated, a real sample,
which imparts an unknown amount of OAM onto the electron
beam, can be studied instead of the generator S-CGH. It is possible
to measure the full OAM spectrum of a beam in one acquisition.
Applications include measurements of the magnetic moments of
dipoles,80 as well as in EMCD81,82 and plasmon characterization.83

S-CGH fabrication requires a knowledge of the functions that
are to be encoded in the unwrapper S-CGH (Λ1) and corrector
S-CGH (Λ2). The phase corresponding to the first element of the
sorter is

Λ1 ¼ w0 sign sin 2πa y arctan
y
x

� �
þ x ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
b

 !
þ x

�����
�����

 ! !
,

(55)

where a and b are parameters that are used to optimise the experi-
mental efficiency, while sign denotes the sign function. The phase

FIG. 25. Steps in the fabrication and validation of two LG beams: (a) Phase
and amplitude utilized for fabrication, (b) tilted SEM image of the resulting
mixed S-CGH (ion current: 300 pA; repetitions: 192; magnification: 3900×), (c)
EFTEM map of the S-CGH, (d) diffraction image showing the “donut-like” shape
of the generated EVB, (e) EFTEM map of superimposed LG beams, and (f )
simulated amplitude and phase and (g) diffraction intensity of the 1st diffraction
order.

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 131, 031101 (2022); doi: 10.1063/5.0067528 131, 031101-27

© Author(s) 2022

https://aip.scitation.org/journal/jap


corresponding to the second element of the sorter is

Λ2 ¼ w0 sign sin 2πabexp �2π
u
a

� �
cos 2π

v
a

� �� �
þ 2πcv

� �
, (56)

where u ¼ �a ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
/b

� �
, v ¼ a arctan y

x

� �
and c is an addi-

tional scaling parameter. For the unwrapper shown in Fig. 26, the
parameters were a = 2, b = 0.01, and c = 0.6. They can be tuned to
match the relative S-CGH and holographic beam sizes. The
peak-to-trough depth should maximize the diffraction efficiencies.
Although the device can be used in any TEM, the electron-optical
configuration is challenging and the use of free lens control and
additional sets of lenses and apertures is recommended.

It is worth to point out that while the phase of the hologram
is everywhere finite, the origin should be mapped on a segment
where u ¼ �1, meaning that the cusp in the origin has a gradi-
ent that is divergent. Of course, while designing the CGH, we are
not able to capture this since we are bound to a maximum value
of u due to the limitations imposed by the computer. In all
virtual calculations we did, the origin is the only problematic
point since the gradient remains finite and relatively small in all
remaining pixels. The mapping is, therefore, everywhere correct
except for the central pixel, but this effect is negligible with
respect to the overall beam intensity.

C. Bessel beam

A third example of a possible application of S-CGHs is the
generation of a non-diffractive Bessel beam. Bessel beams were
first mathematically modeled by Durnin.84 Experimentally, they

were realized as photon quasi-Bessel beams, an approximation
of Bessel beams, which had the same properties over finite dis-
tances.85 Durnin and colleagues defined Bessel beams as beams
“whose central maxima are remarkably resistant to the diffrac-
tive spreading commonly associated with all wave propaga-
tion.”86,87 A Bessel beam can be considered as a coherent
superposition of conical plane waves, or as a set of plane waves
propagating on a cone. Apart from being non-diffractive, they
are also “self-healing,” so that (apart from an overall decrease in
intensity) they can recover their intensity profile. Moreover, a
zeroth order Bessel beam has a smaller central spot diameter
and longer depth of the field than other ordinary beams.88

In light optics, the generation of Bessel beams, or more pre-
cisely quasi-Bessel beams, has been achieved in many ways. The
simplest approach is to use an annular slit or ring aperture.84

This method works since the Fourier transform of a Bessel beam
is a ring. A more efficient method is to use axicon lenses,89–92

which remove the on-axis intensity oscillation, resulting in a
smooth intensity variation in the beam propagation direction.
Other methods are based on S-CGHs,93 SLMs,94,95 and
cavities.96,97

In recent years, by taking inspiration from light optics, dif-
ferent methods have been adopted for the generation of electron
quasi-Bessel beams. In 2014, Grillo et al. reported the use of an
S-CGH to generate non-diffractive quasi-Bessel beams that were
able to propagate for 0.6 m without noticeable spreading of their
central maximum and could reconstruct.37,98 Taking inspiration
from the initial experiments by Durnin and colleagues used
annular slits to generate quasi-Bessel beams.99 In 2017, Zheng

FIG. 26. A sequence of holographic masks and transformations involved in the use of an OAM sorter.
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and colleagues used magnetic vortices with circular magnetic
moment distributions, which are naturally present in soft mag-
netic thin films, as axicon lenses.100 A generic Bessel beam wave
function can be expressed in the form

ψ(ρ, θ, z; t) ¼ Jn(kρρ)e
inθei(kzz�ωt), (57)

where ρ, θ, z are cylindrical coordinates, Jn is the nth order
Bessel function of the first kind, n is an integer, kρ and kz are the
transverse and longitudinal components of the wave vector,
respectively, and k2 ¼ k2ρ þ k2z ¼ 2mω

�h ¼ 2π
λdB

� �2
, where m is the

electron mass, ℏ is the reduced Planck constant, and λdB is the
electron’s de Broglie wavelength. A Bessel wave function is a
well-known non-normalizable solution of the Schrödinger equa-
tion of a free electron in cylindrical coordinates. From Eq. (57),
it is possible to notice that the probability density is independent
of both time and z, and is equal to J2n(kρρ).

The phase S-CGH used by Grillo et al.98 imprints on the
transmitted beam the phase modulation

w(ρ, θ) ¼ w0sgn[cos(kρρþ nθ þ gρcosf)]: (58)

The resulting off-axis Fresnel hologram has carrier fre-
quency g ¼ 2π

Λ , where Λ is the grating spatial period. In this
formula, the chosen profile shape was a squared one with argu-
ment α(ρ, θ) ¼ kρρþ nθ þ gρcosθ, where n is the OAM topo-
logical charge. The α(ρ, θ) that was used is similar to that in
Eq. (52), i.e., the pitchfork design. The resulting quasi-Bessel
beam was an OAM-carrying one. Figure 27 shows a fabricated
phase S-CGH for quasi-Bessel-beam generation, the CGH that
was used to produce it and an experimental diffraction image, in
which it is possible to observe the generated quasi-Bessel beam.
The typical dislocation of a pitchfork design is visible at the
center of Fig. 27(b).

In a later paper,37 by switching to a cosinusoidal profile and
optimizing the fabrication procedure, Grillo and colleagues
increased the transmission efficiency by 37+ 3%. They pointed

FIG. 27. (a) SEM image of a phase S-CGH used for the generation of quasi-Bessel beams with ‘ ¼ 2, recorded with the stage tilted to highlight the three-dimensional
features. (b) Profile function used to obtain (a) by FIB milling. (c) Experimental diffraction image. The first diffraction order on the right shows a quasi-Bessel beam. The
parameters used in Ref. 98 were used to create (b).

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 131, 031101 (2022); doi: 10.1063/5.0067528 131, 031101-29

© Author(s) 2022

https://aip.scitation.org/journal/jap


out possible application fields of quasi-Bessel beams generated
using S-CGHs: smaller aperture radii are best suited for
STEM, while larger radii are best suited for interferometry.
Applications of such structured beams in electrons include clas-
sical techniques such as tomography101 and strain mapping,102

as well as conventional STEM, low dose STEM, and
HR-STEM.37,98,103,104

D. CS corrector

As a final example of beam shaping, we would like to show
that one does not rely on the scheme of Sec. II E. A problem that
has long affected electron microscopy is the presence of spherical
(CS) aberration in any magnetic lens that has cylindrical symmetry.
Although a solution has been found by using a complicated set of
multipoles,105–107 it is interesting to determine whether one can
produce an S-CGH that is able to compensate for spherical aberra-
tion by introducing, in the condenser aperture plane, an equal
phase of opposite sign to that of the CS aberration. The desired
phase α is not known in the diffraction plane, but directly in the
S-CGH plane. Therefore, the aim is to correct the CS aberration in
a STEM probe by using an aperture in the condenser plane. An
early realization of an S-CGH able to compensate spherical aberra-
tion was realized by Shiloh et. al.108 using on-axis correctors with
wrapped phase (in here, they also demonstrated that it was possible
to use S-CGHs to compensate also for other important aberrations
such as two- and three-fold astigmatism). Later, different
groups109–111 have produced holograms using slightly different
recipes. It is also worth mentioning that recently a novel proposal
for shaping electron beams for Cs correction using optical fields
has been reported.112

The general formula of the argument of the phase profile is

α(ρ) ¼ 2π
λ

�Δf ρ2 þ 1
4
Csρ

4

� 	
þ gρcos(θ): (59)

The inline (on-axis) approach is recovered when g = 0. For
correction to be applicable over a wide field (beyond a standard
STEM probe), it is necessary to have a phase ranging over 4� 6π.
One can use either a continuous slope with a thickness t ¼ α or a
discontinuous slope t ¼ Mod(α, 2π) with 2π phase wraps. The first
approach results in a thick membrane and significant absorption,
while the second approach requires precise tuning of the
discontinuities.

An inline version with a large value of Δf can be used to
create many beams that are in focus at different values of the z
coordinate.113 Although any kind of groove, such as a sinusoid can
be used, this approach has not been used so far [see Fig. 28(b)].
Here, we describe the off-axis approach, which allows excellent
control of the phase by employing a thin membrane at the cost of
spurious diffraction orders. Grillo et al.94 explained how to remove
such spurious orders by the smart use of optics components.
Figure 28(a) shows a typical aberration function in the presence of
defocus (CS = 0.5 mm and Δf ¼ 40 nm). The corresponding
off-axis phase S-CGH and a realization are shown in Figs. 28(c)
and 28(d), respectively.

For the realization of the hologram, it is preferable to use a
sinusoidal or a blazed groove shape, which ensures a smoother var-
iation of the phase, as described in Sec. II G. For practical reasons,
the carrier frequency must be quite large so that isolating a specific
beam in the diffraction plane (with the desired CS value) is easier.
These constraints naturally lead to the use of very large holograms,
resulting in challenges in fabrication and durability, as mentioned
in Sec. III E.

V. CONCLUSIONS

In this Tutorial, we have reviewed the concept of “imaging”
holography and explored synthetic holography, from the use of
CGHs to simulate interference patterns to the possibility of engi-
neering wave functions and new techniques in materials science.
We have provided mathematical descriptions of the most com-
monly used groove profiles in amplitude and phase S-CGHs, dis-
cussing their efficiency, and the design of mixed phase and
amplitude S-CGHs. We have described two fabrication techni-
ques that can be used to manufacture S-CGHs, including their
optimization and limitations. Finally, we have provided examples
of possible uses of S-CGHs in the field of electron vortex beams.
We have highlighted the fact that real phase S-CGHs are sensi-
tive to imperfections introduced by fabrication, reducing their
efficiency.

FIG. 28. Design of a holographic CS corrector. (a) Desired phase plate, (b)
inline S-CGH with a sinusoidal groove for Δf = 400 nm, (c) Off-axis S-CGH, and
(d) realization in silicon nitride.
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APPENDIX A: MATHEMATICAL DEMONSTRATION FOR
FOURIER COEFFICIENTS CALCULATIONS

This appendix contains the mathematical demonstration
required to carry out the integrals to calculate the Fourier coeffi-
cients in Appendixes B and C.

Given a periodic function f (α(~ρ)) its Fourier transform can be
written as

F(K) ¼ Ð f (α(~ρ))exp(ik~ρ)d~ρ, (A1)

but f (α(~ρ)) can also be developed as

f (α(�ρ)) ¼P
n
cnexp(iα(~ρ)) , (A2)

where cn ¼
Ð
f (α)exp(inα)dα, so that the Fourier transform can be

rewritten as

F(K) ¼ Ð P
n
cnexp(iα(~ρ))exp(ik~ρ)d~ρ : (A3)

We can then invert the sum and integral and obtain

F(K) ¼P
n
cn
Ð
exp(iα(~ρ))exp(ik~ρ)d~ρ: (A4)

In this expression, it is possible to notice that the terms in the
integral are the diffraction orders. This relation holds in general as
long as all the relevant exp(inα(�ρ)) are bandwidth-limited functions.

We can also calculate the squared modulus of the Fourier
transform

jF(K)j2 ¼P
n
c2n exp(iα(~ρ))exp(ik~ρ)d~ρj j2 , (A5)

which tells us that, in the limit that no diffraction order overlap
with each other, the jcnj2 coefficient of development of the function

f (α(~ρ)) indicate also the efficiency of the complete diffraction
order.

APPENDIX B: CALCULATION FOR PHASE S-CGHs

This appendix contains in-depth calculations of the different
profiles for phase S-CGHs.

1. Cosine profile

A sinusoidal/cosinusoidal profile can be described by the peri-
odic function f (α) ¼ 1

2 (1þ cos(α(~ρ)), with a transmission function
of the form

T(~ρ) ¼ ei
~a
2cos(α(~ρ))ei

~a
2 ¼ ei

a1
2 cos(α(~ρ))e�

a2
2 cos(α(~ρ))ei

~a
2

¼ eia
0
1cos(α(~ρ))e�a02cos(α(~ρ))ei~a

0
, (B1)

where the primed variables are used to simplify the calculations.
T(~ρ) can be rewritten using the Jacobi-Anger expansion

T(~ρ) ¼ ei~a
0 X1
n¼�1

(inJn(~a
0))einα(~ρ), (B2)

where the Fourier series coefficients of T(~ρ) are

τn ¼ inJn(~a
0)ei~a

0
: (B3)

jτnj2 can be plotted with the complex argument Bessel function
while an analytical approximation can be derived from Eq. (B1).
The first term of T(~ρ) can be rewritten using the Jacobi–Anger
expansion, while the second term can be expanded by making use
of the approximation a02 � 1, resulting in the expression

T(ρ) � exp(ia)exp(ia1cos(α))(1� a2cos(α)): (B4)

Then,

T(ρ) � exp(i~a0)
P
n
(�i)nJn(a

0
1)exp(inα)

� �
(1� a02cos(α)): (B5)

If the Fourier coefficient is defined according to the expres-
sion

τm ¼ Ð T(ρ)exp(�imα)dα (B6)

and we use the property of convolution

τm ¼ exp(i~a0)
ð X

n

(�i)nJn(a
0
1)exp(inα)

" #
exp(�imα)dα

( )

�
ð
(1�a02cos(α))exp(�imα)dα

� 

, (B7)
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then we can develop the terms

Ð P
n
(�i)nJn(a

0
1)exp(inα)

� �
exp(�imα)dα¼P

n
δm,nJn(a

0
1)(�i)n,

(B8)

ð
1� a2cos αð Þð Þexp �imαð Þdα ¼

ð
1� a02

2
exp iαð Þ þ exp �iαð Þð Þ

� 	

� exp �imαð Þdα

¼δm;0 � a02
2

δm;1 þ δm;�1
� �

, (B9)

to obtain the final coefficient in the form

τm ¼ (�i)m(Jm(a01)) δm,0 � a02
2
(δm,1 þ δm,�1)

� �
exp(i~a0): (B10)

If we now make use of discrete convolution according to the
expression

τm ¼ exp(i~a0)
P
k
(�i)k(Jk(a01)) δk, m�0 � a02

2
(δk, m�1 þ δk,mþ1)

� �
,

(B11)

then

τm ¼ (�i)mJm(a1)�
a2
2
((�i)mþ1Jmþ1(a

0
1)þ (�i)m�1Jm�1(a1)]exp(i~a

0) ,

(B12)

τm ¼ (�i)m Jm(a1)þ
ia2
2
[Jm�1(a1)� Jmþ1(a1)]

� 

exp(i~a0):

The efficiency of the nth diffraction order is proportional to
jτnj2, where

jτmj2 ¼ J2m(a
0
1)� a022

4
(Jm�1(a

0
1)� Jmþ1(a

0
1))

2
� �

e�2a02 : (B13)

2. Squared profile

A periodic grating function with a squared profile
f (α) ¼ 1

2 Signjsin(α(~ρ))j has the transmission function

T ~ρð Þ ¼ e
i
~a
2
Sign sin α ~ρð Þð Þð Þ ¼ ei~a

0Sign sin α ~ρð Þð Þð Þ

¼ eia
0
1Sign sin α ~ρð Þð Þð Þ e�a02Sign sin α ~ρð Þð Þð Þ; (B14)

where the ~a is primed to take into account that the amplitude of
Sign(sin(α(~ρ))) is half the peak-to-valley distance, simplifying the
calculation. The Fourier coefficients of T(~ρ) can be calculated from

the expression

τn ¼ 1
2π

ð2π
0
ei~a

0Sign(sin(α(~ρ)))e�inα(~ρ)dα: (B15)

As a result of the properties of the Sign function, Eq. (B15)
can be written

τn ¼ 1
2π

ðπ
0
ei~a

0
e�inα ~ρð Þdα þ

ðπ
0
e�i~a0e�inα ~ρð Þdα

� �

¼
cos ~a0ð Þ for n ¼ 0;

0 for n even;
2 sin ~a0ð Þ

nπ
for n odd;

8>><
>>: (B16)

such that, for example,

τ1 ¼ 2sin ~a0ð Þ
π

¼ 2
π

sin a01
� �

cosh a02
� �þ icos a01

� �
sinh a02

� �� �
: (B17)

The efficiency of the first diffracted order is proportional to

jτ1j2 ¼ 4
π2

[sin2(a01)cosh2(a02)þ cos2(a01)sinh2(a02)] : (B18)

The maximum is reached when a01 � 1:57 rad, so the optimal
peak-to-valley phase difference is Δw � π.

3. Triangular profile

We now consider a triangularly-shaped profile; specifically, an
isosceles triangle that can be described by the profile function
f (α) ¼ 1

π (Sign(sin(α(~ρ))))(π �Mod(α(~ρ), 2π)), with the transmis-
sion function

T(~ρ) ¼ ei~a
1
π(Sign(sin(α(~ρ))))(π�Mod(α(~ρ),2π)), (B19)

where Mod(a, b) is the remainder after dividing a by b. The
Fourier coefficients can be calculated from the integral

τn ¼ 1
2π

ð2π
0
ei~a

1
π(Sign(sin(α(~ρ))))(π�Mod(α(~ρ),2π))e�inα(~ρ)dα, (B20)

resulting in the expression

τn ¼ �i(a1 þ ia2)[(�1)nþ1 þ ei(a1þia2)]
(a21 þ 2ia1a2 � a22 � n2π2)

, (B21)

from which the generic efficiency of the nth diffracted order is
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proportional to

jτnj2 ¼ (a21 þ a22)[1þ 2(�1)nþ1e�a2 (cos(a1))þ e�2a2 ]
[a41 þ 2a21a

2
2 þ a42 þ n4π4 � 2n2a21π2 þ 2n2a22π2]

: (B22)

4. Blazed profile

A specific example of a triangular profile is a blazed profile,
which is similar to that of a sawtooth blade. The profile function is
now simply f (α) ¼ 1

2π (Mod(α(~ρ), 2π)), while the transmittance
function is

T(~ρ) ¼ ei~a
1
2π(Mod(α(~ρ),2π)): (B23)

As before, the Fourier coefficients are

τn ¼ 1
2π

ð2π
0

e
i~a
1
2π

Mod α ~ρð Þ; 2πð Þð Þ
einα ~ρð Þdα

¼�i �1þ ei~a
� �
~aþ 2πnð Þ ; (B24)

such that

jτnj2 ¼ (1þ e�2a2 � 2cos(a1)e�a2 )

[(a1 þ 2πn)2 þ a22]
: (B25)

APPENDIX C: CALCULATIONS FOR
AMPLITUDE S-CGHS

For most grating profiles, the calculations are relatively simple
as they just involve calculating the squared modulus of the Fourier
coefficients of the profile functions. However, some cases require
full calculations.

1. Squared profile with an arbitrary duty cycle

For a square profile with an arbitrary duty cycle, the profile
function between 0 and 2π is

f (α) ¼ 1 for 0 , α 	 2πD,
0 for 2πD , α 	 2π,

�
(C1)

where the duty cycle D is constant, with 0 , D , 1. The funda-
mental frequency associated with f (α) is ω0 ¼ 1 since the period is
2π. The Fourier coefficients are

τ0 ¼ 1
2π

ð2π
0

f (α)dα ¼ 1
2π

ðD*2π
0

1 dα ¼ D , (C2)

τn=0 ¼ 1
2π

ð2π
0

f αð Þeinω0αdα ¼ 1
2π

ðD�2π
0

1einαdα

¼ 1
2π

1
in

einD2π � 1
� � ¼ 1

2
einDπ

inπ
einDπ � e�inDπ
� �

¼ einDπ

nπ
sin nDπð Þ ¼ DeinDπsinc nDπð Þ; (C3)

Therefore,

jτnj2 ¼ D2 for n ¼ 0,
D2sinc2(nDπ) for n = 0:

�
(C4)
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