000907459 001__ 907459
000907459 005__ 20230731203854.0
000907459 0247_ $$2doi$$a10.1021/acs.jpcc.1c09257
000907459 0247_ $$2ISSN$$a1932-7447
000907459 0247_ $$2ISSN$$a1932-7455
000907459 0247_ $$2Handle$$a2128/31101
000907459 0247_ $$2WOS$$aWOS:000739933000001
000907459 037__ $$aFZJ-2022-02051
000907459 041__ $$aEnglish
000907459 082__ $$a530
000907459 1001_ $$0P:(DE-Juel1)180314$$aCao, Pengfei$$b0
000907459 245__ $$aAtomic-Scale Insights into Nickel Exsolution on LaNiO 3 Catalysts via In Situ Electron Microscopy
000907459 260__ $$aWashington, DC$$bSoc.$$c2022
000907459 3367_ $$2DRIVER$$aarticle
000907459 3367_ $$2DataCite$$aOutput Types/Journal article
000907459 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690793241_13143
000907459 3367_ $$2BibTeX$$aARTICLE
000907459 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907459 3367_ $$00$$2EndNote$$aJournal Article
000907459 520__ $$aUsing a combination of insitu bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO3 perovskite material during heating in vacuo. Driven by the outstanding activity LaNiO3 in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO3 during DRM operation into a Ni//La2O3 composite, we reveal the Ni exsolution dynamics both on a local and global scale by insitu electron microscopy, insitu X-ray diffraction and insitu X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO3 decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO3 via a Ruddlesden–Popper La2NiO4 intermediate structure. Exemplified for the archetypical LaNiO3 perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.
000907459 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907459 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907459 7001_ $$0P:(DE-Juel1)179016$$aTang, Pengyi$$b1
000907459 7001_ $$0P:(DE-HGF)0$$aBekheet, Maged F.$$b2
000907459 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3
000907459 7001_ $$0P:(DE-Juel1)180548$$aYang, Luyan$$b4$$ufzj
000907459 7001_ $$0P:(DE-HGF)0$$aHaug, Leander$$b5
000907459 7001_ $$0P:(DE-HGF)0$$aGili, Albert$$b6
000907459 7001_ $$0P:(DE-HGF)0$$aBischoff, Benjamin$$b7
000907459 7001_ $$00000-0001-7047-666X$$aGurlo, Aleksander$$b8
000907459 7001_ $$0P:(DE-HGF)0$$aKunz, Martin$$b9
000907459 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b10
000907459 7001_ $$00000-0002-2561-5816$$aPenner, Simon$$b11
000907459 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b12$$eCorresponding author$$ufzj
000907459 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.1c09257$$gVol. 126, no. 1, p. 786 - 796$$n1$$p786 - 796$$tThe journal of physical chemistry <Washington, DC> / C$$v126$$x1932-7447$$y2022
000907459 8564_ $$uhttps://juser.fz-juelich.de/record/907459/files/Invoice_APC600281018.pdf
000907459 8564_ $$uhttps://juser.fz-juelich.de/record/907459/files/acs.jpcc.1c09257.pdf$$yOpenAccess
000907459 8767_ $$8APC600281018$$92022-01-06$$d2022-01-10$$eCover$$jZahlung erfolgt$$z1495USD Belegnr.: 1200175282
000907459 909CO $$ooai:juser.fz-juelich.de:907459$$popenaire$$pVDB$$pdriver$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost
000907459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180314$$aForschungszentrum Jülich$$b0$$kFZJ
000907459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b3$$kFZJ
000907459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180548$$aForschungszentrum Jülich$$b4$$kFZJ
000907459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000907459 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b12$$kFZJ
000907459 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907459 9141_ $$y2022
000907459 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907459 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907459 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907459 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
000907459 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907459 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907459 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907459 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907459 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11
000907459 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907459 920__ $$lyes
000907459 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907459 980__ $$ajournal
000907459 980__ $$aVDB
000907459 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907459 980__ $$aAPC
000907459 980__ $$aUNRESTRICTED
000907459 9801_ $$aAPC
000907459 9801_ $$aFullTexts