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The vibrational density of states (VDOS) of disordered systems shows a low-frequency excess, the so-called
boson peak. Experiments show a change in the shape of the boson peak when the systems are spatially
confined. Depending on the type of confinement (hard or soft) the low-frequency wing of the boson peak is
either suppressed or enhanced. Here, a simple model, a crystalline system with disordered nearest-neighbor
force constants, is studied with boundary conditions mimicking the confinement. The VDOS calculated by
numerical diagonalization shows qualitatively the same confinement effect as the experiment. In this model,
the effect is a consequence of modes of the bulk system being shifted up or down for hard and soft confine-
ment, respectively. A simple rescaling procedure is suggested to convert the VDOS of the bulk into that of the

confined system.
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I. INTRODUCTION

A ubiquitous feature of the vibrational density of states
(VDOS) g(w) in amorphous materials is the occurrence of
low-frequency vibrations, which are not present in the crys-
talline counterparts.' It was first detected indirectly as an
anomaly in the low-temperature specific heat? and by Raman
spectroscopy,® later also by inelastic neutron scattering
(INS),* and nuclear inelastic  scattering/absorption
(NIS/NIA).> The latter methods provide g(w) directly and it
turns out that it shows an extra contribution with respect to
the Debye VDOS gpepye(®) ¢ w?. In other words, the reduced
VDOS, g(w)/w?, is not constant but shows a peak a low
frequency, which is commonly called “boson peak” (BP).

There are currently several competing explanations of the
BP phenomenon, which can be roughly classified in two cat-
egories: (i) the modes constituting the BP are distinct from
sound waves and arise from peculiarities of the interatomic
forces in amorphous materials, e.g., soft potentials.®” (ii) The
VDOS of the amorphous system is just a modification of the
crystalline VDOS due to the fluctuation of force constants.?
In the latter picture, the BP would “only” be the broadened
version of the lowest van Hove singularity in the correspond-
ing crystalline system.’

Recent INS experiments showed that there is a character-
istic effect on the BP if molecular liquids or polymers are
confined in nanoporous silica with pore diameters in the
range 25-200 A (Refs. 10 and 11): the low-frequency wing
of the BP is suppressed while the high frequency wing is
nearly unchanged. In consequence, the BP seems to become
sharper and shifted toward higher frequency. This effect
could also be confirmed by NIA.!?

In many studies of dynamics of glass-formers in confine-
ment, there was the indication that surface effects play an
important role in addition to the bare confinement (size)
effect.® In most cases, the confinement used was “hard” in
the sense that the dynamics of the confining matrix was
slower than that of the confined material. This motivated
experiments exploring the opposite situation of “soft” con-
finement. This situation could be realized by enclosure of a
glass-forming liquid in microemulsion droplets.'* When the

1098-0121/2010/81(5)/054208(10)

054208-1

PACS number(s): 63.50.—x, 61.43.Fs, 63.22.Kn

VDOS of this soft-confined system was studied,'’ it turned
out that the effect on the BP is opposite: the VDOS below the
BP maximum increases and the BP seems to be completely
washed out.

Although these experiments are in some aspects still pre-
liminary, they indicate that the BP depends strongly on the
boundary conditions of the confined glass-former. Therefore,
it is interesting to study this effect in a computational model
system where the boundary conditions can be chosen at will.
Here, the probably simplest system showing a BP anomaly in
the VDOS was used, the force-constant-disordered lattice.”!
This model is based on the calculation of the vibrational
spectrum of a system of “atoms” located on an ideal crystal-
line lattice, i.e., no structural disorder of the atoms is
assumed.

In the last decade, considerable activity has been invested
in the simulation of more realistic model exhibiting a BP.
This was done for model potentials (e.g., soft spheres,
Lennard-Jones)'”!® as well as for realistic potentials of glass-
forming materials (e.g., silicon, silica).'*2! It turns out that
certain properties of the vibrational spectrum can only be
mimicked by realistic models presumably because they con-
tain positional disorder in addition to force-constant
disorder.”?> Nevertheless, this study will use the extremely
simplified disordered force-constant model because it is al-
ready able to produce the basic feature to be studied here, the
boson peak.

In Sec. II, the disordered force-constant model will be
briefly recalled and its modification to represent the confined
situation will be described. Numerical results will be pre-
sented in Sec. III for different confinement sizes and geom-
etries. It will be shown that a simple rescaling relation allows
to convert the VDOS of the bulk to that of the confined
system (Sec. IV). The rescaling relation will be tested on
experimental data from inelastic neutron scattering too. Fi-
nally, the consequences for the understanding of the BP will
be discussed.

II. DISORDERED FORCE-CONSTANT MODEL

The probably simplest systems showing a boson peak
anomaly are derived from the model of a crystal introducing
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a disorder in the force constants between the atoms. Har-
monic forces are assumed between neighboring atoms with a
random distribution of force-constants K;;. Such models do
not include any positional disorder of the atoms as, e.g.,
models based on quenched molecular dynamics'’-?! do. In
addition to their simplicity, these models have the advantage
that the coherent potential approximation (CPA) works very
well for infinite systems and reproduces the numerical results
accurately.>'® Here, the problem is that for the confined sys-
tems, the structure is not translationally invariant, especially
boundary atoms do not have the same number of nearest
neighbors. Translational invariance is a prerequisite of the
currently applied CPA calculations. An extension of CPA to
finite systems may be possible but is beyond the scope of this
article.

The systems considered here are generated mostly the
same way as those in Ref. 16: a simple-cubic lattice is used.
The displacement of the atoms is taken as a scalar variable.”
A Gaussian distribution of force constants with a width o
=1 around the average force-constant K,=1 truncated at
Knin=—0.2 is used. The only difference introduced here con-
cerns the force constants at the boundary for the “confined”
systems. For the “soft confinement,” open boundary condi-
tions are imposed by setting the boundary force constants to
zero. To simulate a hard confinement, the energy terms at the
boundaries are replaced like K (r;—r)?/2 by K;r2. This has
the meaning of a boundary spring with a double average
strength connected to a wall. It is clear that by this modifi-
cation, the zero-frequency mode corresponding to translation
of the whole system vanishes. The double force constant is
introduced because for this choice some of the eigenmodes
of the ordered periodic boundary conditions (PBC) system
are also eigenmodes of the ordered confined system. All
masses are assumed to be equal, m=1.

LXLXL systems are studied where L=23 due to
memory limitation of the Hamiltonian matrix. The eigenval-
ues of the Hamiltonian matrix were calculated by the routine
DSYEV from the LAPACK library. For some systems, also the
eigenvectors were calculated in order to evaluate the sound
velocities and participation ratios. To see the influence of
system size on the confinement effect and possible finite-size
effects, two system sizes are compared. For L=15,90 repeti-
tions with different random seeds are carried out to improve
statistics, for L=23,25 repetitions. From the eigenvalues, the
reduced VDOS g(w)/w? is calculated using a modified his-
togram analysis. It is assumed that g(w)/w? is constant over
a certain interval and its value is determined by the condition
that the integral over that interval results in the number of
eigenfrequencies actually counted. The interval widths are
chosen such that the same number of eigenfrequencies falls
into each of them. To illustrate this implied meaning of the
g(w)/ w?* values, the histogram is displayed for one calcula-
tion in Fig. 1. It can be seen that the procedure leads to a
rather smooth histogram for the given repetition counts and
sufficiently small interval numbers (50 for L=15 and 75 for
L=23). For all other calculations, only g(w)/? vs the aver-
age w in the histogram interval is shown as points.

It has to be mentioned that the occurrence of negative
eigenvalues cannot be completely avoided for the systems
constructed as described above. Table I shows the number of
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FIG. 1. Comparison of the reduced VDOS for systems with
different boundary conditions (model with one force-constant dis-
tribution). Circles correspond to periodic boundary conditions
(PBC), triangles to boundary conditions corresponding to hard con-
finement, and squares to open boundary conditions, viz. soft con-
finement. Filled symbols correspond to a system-size L=15 and
open symbols to L=23. For L=23 with PBC, the underlying histo-
gram is shown.

systems with negative eigenvalues and the number of nega-
tive eigenvalues resulting from the numerical diagonalisa-
tion. It can be seen that the generated systems rarely contain
negative eigenvalues. In most of the cases where negative
eigenvalues occur, there is only one of these per system. In
the calculation of the histograms presented here the negative
eigenvalues were not considered. This means that, strictly
speaking, the normalization condition of the VDOS
Jg(w)dw=1 is not fulfilled. But from the fact that in the
worst case among 377 300 eigenvalues studied there, were
22 negative the deficiency in the integral can be estimated to
be <107*. This situation occurred only for one system type
(L=7 with open boundary conditions), for all others, the fre-
quency of negative eigenvalues was an order of magnitude
less. It was also tested whether those (up to 8%) systems,
which have (in most cases single) negative eigenvalues lead
to a different g(w). No statistically significant difference was
found. So the same histogram curves would be obtained if
the systems with negative eigenvalues were excluded from
the statistics. Nevertheless, in order to avoid a hidden statis-
tical bias, this was not done. Alternative distributions of
force constants as full Gaussian or box distribution were
checked. But in the end, the truncated Gaussian was the best
compromise to avoid negative eigenvalues while retaining a
VDOS showing a pronounced BP.

III. NUMERICAL RESULTS

As Fig. 1 shows, for the PBC system, there is only a small
difference between L=15 and L=23 indicating that finite-
size effects can be neglected. Therefore, the PBC result of
the larger (L=23) system has been taken as representative for
an infinite system.

The systems with hard and soft confinement show signifi-
cant deviations from the PBC (bulk) system. The low-
frequency limit of g(w)/w? is decreased or increased, the BP
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TABLE I. Number of systems with negative eigenvalues and the number of negative eigenvalues for all

systems of one type.

Systems with Eigenvalues of all Negative

L Confinement type Systems negative eigenvalues generated systems eigenvalues
23 —(PBC) 25 1 304175 1
23 Hard 25 1 304175 1
23 Soft 25 2 304175 2
15 —(PBC) 90 0 303750 0
15 Hard 90 0 303750 0
15 Soft 90 1 303750 1

7 —(PBC) 1100 0 377300 0

7 Hard 1100 0 377300 0

7 Soft 1100 22 377300 22

15 1D, hard 90 0 303750 0
15 1D, soft 90 1 303750 1
15 2D, hard 90 1 303750 1
15 2D, soft 90 3 303750 4
15 1D, mixed 90 2 303750 2

shifted to higher or lower frequencies, respectively. This is
exactly the qualitative behavior found in the experiment.'%
As expected, the differences to the bulk result reduce for
increasing system size.

In retrospect, an unmentioned difference in the low-
frequency VDOS of early models of vitreous silicalike com-
pounds between fixed (hard) and free (soft) boundary
conditions>* can be presumed the same phenomenon. But
due to size limitations and the impossibility to realize PBC in
this model, a comparison with the undistorted BP is not
possible.

For an infinite system, one would expect the VDOS at low
frequencies (i.e., significantly lower than the BP maximum)
to be related to the sound velocity by the relation from the
Debye model,

gw) = #ﬂaﬁ. (1)

Setting the lattice constant a=1 in addition to m=1, one
obtains g(w)/w?=1/27* for the ordered model with K;;=1.
For the ordered model, the VDOS can be calculated
analytically'® and it shows this limit. To check the low-
frequency limit here, the sound velocity is calculated in two
ways: (i) the lowest eigenvectors are calculated. These rep-
resent nearly unperturbed plane waves with the mode indices
(1,0,0), (1/2,1/2,1/2), and (1/2,0,0) for the PBC, hard-
confined, and soft-confined systems, respectively. The sound
velocity can then be calculated from the relation v=w/gq
where q=27TL‘1, V3wL™!, and 7L~ for the three system
types. The disadvantage of this method is that the calculated
sound velocity is not exactly the one in the limit ¢— 0. Due
to the dispersion, it will be slightly lower. (ii) Following a
suggestion by Léonforte,”® the elastic modulus of the system
can be calculated for the PBC system: for a system in which
the bounding box size A=L-a is reduced in one dimension

by AA, the new equilibrium positions of the atoms are cal-
culated. It has to be noted that these positions are not just the
affinely rescaled original positions.” The atoms may rear-
range lowering the energy. The potential energy U of the
“compressed” system is then calculated and from this the
elastic modulus by M=2U/AA?A. The disadvantage here is
that there is no obvious way to apply this procedure to the
confined system without tampering with the boundary
conditions.

Table II shows the results of these sound velocity calcu-
lations. As expected, the sound velocity from low-frequency
modes is slightly lower. It turns out that for both calculation
methods, there is a distribution of sound velocities. This can
be clearly seen from the fact that the variance does not in-
crease with the number of calculated realizations with VN but
levels off to the presented values at system numbers around
those listed in Table 1. For the calculation from low g, this
distribution can be related to the broadening of neutron and
x-ray Brillouin scattering lines in disordered systems.’® But
currently, the statistics of the data is not sufficient to allow a
quantitative statement about questions as, e.g., the exponent

TABLE II. Sound velocities of selected systems. v(gy;,) is the
value calculated from the lowest eigenvalues corresponding to the
minimal wave vector allowed by the confinement type. v(0) is the
sound velocity calculated via the elastic modulus as described in
Ref. 20. Note that the variation *... is not a statistical error but
reflects the distribution of sound velocities in multiple instances of
the systems.

L Confinement type  gpin U(Gmin) v(0)

23 —(PBC) 0.27 1.0016=0.0053 1.0070=0.0036
15 —(PBC) 0.42 1.0016=0.0053 1.0070=0.0036
15 Hard 0.36 1.0081 =0.0028

15 Soft 0.21 1.0013£0.0051
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of the relation between width and frequency of the Brillouin
line.

All sound velocities do not differ much from that of the
ordered model with K;;=1, which is vggereg=1. Of course,
this is an accidental property of the distribution chosen here.
Nevertheless, one would then expect all curves in Fig. 1 to
show the same low-frequency limit, =~0.05. That this is not
the case has two reasons: (i) even in the PBC system, there is
a deviation because the upper boundary of the lowest histo-
gram bin is chosen rather high. In the range of this first bin,
the VDOS is already increasing noticeably above the Debye
limit. On the other hand, this bin cannot be chosen slimmer
because it has to include several soundlike modes to produce
a smooth average. (ii) In the case of confined systems, the
deviation is bigger, positive for the soft confinement and
negative for the hard. Here, the assumption of the Debye
model (1) that the density of modes in g space is homoge-
neous is not fulfilled. For low ¢, it has to be taken into
account that certain modes are not possible for hard confine-
ment and certain modes are more “crowded” for the soft
confinement. A visual inspection of modes in the low-
frequency range showed no indication of non-sound-wave
modes contributing to the discrepancy between Debye
VDOS and that calculated except for some spurious modes
whose number is similarly small as that of negative eigen-
values.

It is sometimes argued that the simple-cubic system with
scalar vibrations is unphysical for two reasons: (i) the
simple-cubic system is mechanically unstable, more pre-
cisely, shows of the order of L? zero-frequency eigenmodes.
This would be true if the model were realized as a three-
dimensional bead-and-spring model. In this case, the vibra-
tion amplitude is a three-dimensional vector. Of the three
components of the amplitude, only the one parallel to the
distance vector to the nearest neighbor is coupled in first
order. On the contrary, for the model considered here, all
amplitudes are coupled between neighbors. Therefore, there
is only one zero-frequency mode, which corresponds to
translation of the whole system. Converting this to a me-
chanical model, this would be a model with springs, which
are equally stiff with respect to bending as with respect to
stretching. This immediately leads to a second objection.

(ii) Even if one considers the atoms in the model as
coarse-grained entities representing small “blocks” of actual
matter, one would expect the compliance to shear to be lower
than that to compression. In other words, one would expect a
difference between transverse and longitudinal modes. This
can be implemented in the model by multiplying the random
force constants in one spatial direction by a factor. (Accord-
ing to the empirical relation that the longitudinal sound ve-
locity is usually about twice the transverse, the factor was
chosen to be 4.) Again, it can be argued that for the three-
dimensional system this has to be done for all three compo-
nents of the amplitude but on the simple-cubic grid the
Hamiltonian matrix decomposes into three independent ones.
Therefore, also here the, scalar treatment cannot be
improved.

Figure 2 shows the reduced VDOS calculated for this
modification. It can be seen that the general effects of the
hard and soft confinement are the same as in the case where
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FIG. 2. Comparison of the reduced VDOS for systems with
different boundary conditions for a model with different longitudi-
nal and transverse force-constant distributions, K;=4Krt. Circles
correspond to periodic boundary conditions, triangles to boundary
conditions corresponding to hard confinement, and squares to open
boundary conditions, viz. soft confinement. Filled symbols corre-
spond to a system-size L=15 and open symbols to L=23. The con-
tinuous curve is the analytical result for the corresponding ordered
system

no distinction between transverse and longitudinal force con-
stants was made. The comparison with the analytically cal-
culated VDOS of the ordered system also shows that the BP
is related to the lower van Hove singularity of the transverse
mode.

In experiments, amorphous materials are often confined
only with respect to a limited number of spatial dimension,
e.g., in one dimension as polymer films.”’ Therefore, it is
interesting to check what the effect on the BP is for the
model systems studied here if only one or two Cartesian
direction have hard/soft boundary conditions but the others
are still periodic. The result is shown in Fig. 3 for hard con-
finement. As one would naively expect, the results lie in
between the fully confined and the PBC system. Therefore,
for experiments on free-standing films one would expect a
similar but weaker effect on the BP as for three-dimensional
soft confinement. This was not observed in the only inelastic
neutron scattering experiment on free-standing polymer
films.”® But it has to be noted that these experiments were
done on 55-107 nm thick films. This size is much larger than
the usual size of the three-dimensional confinement in stud-
ies of molecular liquids (2.5-20 nm). Considering the 1/L
scaling motivated in the next section, the effect may have
been too small to be observed.

Finally, a common experimental situation is that of a sup-
ported film,? i.e., a film with hard confinement on one side
and a free surface on the other. As Fig. 4 shows, the model
yields an exact compensation of the effects of the two sur-
faces here. The only existing experimental determination of
the VDOS in this geometry* shows an unchanged BP shape
in agreement with this result but a reduced overall intensity
in contrast. Also in this study, the film thickness was com-
paratively large (40-100 nm).

A crucial question in the study of vibrational states in
disordered systems is that of localization.>'3*> There are dif-
ferent approaches to quantify localization. Of these, two will
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FIG. 3. Reduced VDOS for systems confined in selected dimen-
sions only. The symbols represent hard-confined L=15 systems:
3D-cube (filled circles), 2D-wire (open circles), 1D-plate (filled tri-
angles). For comparison, also the unconfined system is shown (open
triangles). The lines represent the VDOS of the PBC system with
L=23 rescaled by Egs. (6) and (5) (see Sec. IV). The inset shows a
plot of Aw from rescaling fits. Filled symbols correspond to hard
confinement and empty symbols to soft confinement. The lines are
fits of proportionalities to the number of confined dimensions.

be used here to check for possible differences due to differ-
ent boundary conditions: level distance statistics'® and par-
ticipation ratio.’!

The procedure to obtain the level distance statistics is ba-
sically the same as in Ref. 16. The eigenfrequencies w; are
converted into normalized levels €;, which have a uniform
density 1 between 0 and L?. The number of states up to
frequency w is

G(w) =L3J g(w)dw'. (2)
0

By mapping the eigenvalues through €;=G(w;), the desired
uniformity is achieved. For g(w) in Eq. (2), histograms as in

0.10

u))/(n2

~

o 0.05

0.00

FIG. 4. Reduced VDOS of system confined in one dimension by
mixed boundary conditions (small filled symbols) compared to pe-
riodic boundary conditions (large open symbols).
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FIG. 5. Level distance statistics for the eigenvalues close to the
BP (w=1.2,...,2, filled symbols) and for the 0.5% highest eigen-
values (hollow symbols). Circles, triangles, and squares correspond
to PBC, hard confinement, and soft confinement, respectively.
System-size L=15. (For reasons of clarity, the w values are slightly
offset.) The lines represent the Gaussian othogonal ensemble (GOE)
(continuous) and Poisson statistics (dashed).

Fig. 1 are used but with an increased bin resolution in the
high frequency region. Then, a histogram of the distances
s;=|€;;1— €| is constructed. The results are shown in Fig. 5
together with the distribution of the Gaussian orthogonal en-
semble (GOE), P(s =%7TS exp(—ms?/4), expected for delo-
calized states because of level repulsion, and the Poisson
distribution, P(s)=exp(-s), expected for localized states. It
can be seen that in the BP region (w=1.2,...,2) irrespective
of the nature of the boundary conditions the states follow the
expected behavior for delocalized modes. This turns out to
be the same for different choices of the analyzed interval
between w=1 and w=4. Only for the highest 0.5% modes
(i.e., at @>4.21,...,4.33 depending on the boundary condi-
tion type), the statistics becomes clearly Poissonian. Already
by including the next lower 0.5%, significant deviations from
Poissonian statistics are generated. The modes below w=1
are difficult to analyze because the spectrum disintegrates
into bunches of near-sound-wave modes there, so no clear
statement can be made here. In summary, as found for the
PBC system in Ref. 16, there is no indication of localization
except for the band edge for all types of boundary condi-
tions.

Because in the calculation performed here, also the eigen-
vectors are obtainable, as a direct measure of localization,
the participation ratio can be calculated

3 -1

L
pi=\L2 et . 3)
=1

Here, j counts the modes and [ the lattice sites, and e;; for
j=1,...,L* are the eigenvectors. In the ideal case of equal
amplitudes (which is only realized for the w=0 translational
mode), one obtains p=1. For localized modes, the value
should be significantly smaller. But it has to be noted that
even for sound waves, the value of one will not be attained.

There will be a spread of the amplitudes between nodes and
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FIG. 6. Statistics of the participation ratio in the BP range (w
=1.2,...,2). Circles, triangles, and squares represent different
system-sizes L=7, 15, and 23, respectively. (Error bars are drawn
only for L=23, for the other systems they would be smaller than the
symbol size.)

maxima leading to p~=~0.1,...,0.7. What is more character-
istic is that p scales with the system size as L™ for localized
modes. For reasons of computing time, this calculation was
only done for one instance of the L=23 system, for the other
system sizes as noted in Table I. Therefore, the statistics for
L=23 is not as good as for the smaller systems. The partici-
pation ratios were evaluated by histograms in the same w
regions as before for the level distance statistics.

The result for the BP region is shown in Fig. 6. The values
are smaller than one but it is clear that there is no scaling
with the system size, which would be 773:1573:2373. For
hard boundary conditions, the average participation ratio is
smaller. This is not surprising because these boundary con-
ditions enforce nodes at the boundary concentrating the am-
plitude into the center of the system. A similar but smaller
effect can be seen for soft boundary conditions where the
maxima of the amplitudes are forced to the boundary. Nota-
bly, the distribution of participation ratios is not unchanged
between L=15 and L=23. This shows that concerning this
quantity there is still some finite-size effect remaining in
contrast to g(w).

Figure 7 shows the statistics of the participation ratio for
the 0.5% highest modes. On an absolute scale the values are
a magnitude smaller than in the BP region. What is more
important is that in the high frequency region there is a big
influence of system size. As the insets in the figure show the
expected scaling with L3 is fulfilled even quantitatively. So
also from the criterion of participation ratio, the high fre-
quency modes are localized.

In summary, both ways to analyze the degree of localiza-
tion show no difference between confined and PBC system.
In all cases, localized modes can be confirmed only at the
band edge. As pointed out by Schober, it may be unjustified
to use the modes from the numerical diagonalisation directly
in such evaluations.!”3! There, it is shown that by rotating
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FIG. 7. Statistics of the participation ratio for the 0.5% highest
modes. Circles, triangles, and squares represent different system-
sizes L=7, 15, and 23, respectively. The inset shows tests of the
scaling with system size expected for localized modes.

the basis of modes in a narrow energy range one can decom-
pose the directly obtained modes into extended and localized
ones. It is probably possible to do this with the modes ob-
tained here, too, but this would go beyond the scope of the
current publication and probably also not lead to differences
between the boundary condition types because there are no
differences in the primary data.

IV. BULK-TO-CONFINED RESCALING

A. Rescaling formula

Figure 8 shows the change in eigenfrequencies for one
particular L=15 system induced by changing the boundary
conditions. It can be seen that the majority of eigenfrequen-

0.4 T T T T

03 b

0_2 L ] <

0.1

Wiconfined ~ Dpec

Opgc

FIG. 8. Eigenfrequency difference induced by change in the
boundary conditions. The symbols show the difference of the eigen-
frequencies between an L=15 system with confinement boundary
conditions (hard: filled symbols, soft: empty symbols) and periodic
boundary conditions. The curves represent the difference expected
from Eq. (5).
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cies increases for the transition PBC-hard and decreases for
PBC-soft. In this comparison, the modes are naively ordered
by the magnitude of the eigenfrequency. Of course, this is
debatable since the modes compared may not be the “same”
in the sense of an identical wave vector. (A wave vector is
not defined in the disordered system.)

Therefore, it makes sense to consider the situation in the
corresponding systems without force-constant disorder
briefly. For these systems, there is an exact rule telling which
mode evolves into which upon changing the boundary con-
ditions: all mode eigenvectors of the ordered PBC system
can be written as

3
u(ly,l,,13) = H trig

a=1

(4)

(27-rka(la + 1/2))
L 9’

where (k,k,,k3) with k,=0,1,...,(L—1)/2 (assuming odd
L) is the mode multi-index, (/,,1,,l5) with 1,=0,1,...,L—1
determines the position in the lattice, and each function
“trig” may either be “cos” or “sin.”* The choice of
cos(x+7/L) and sin(x+ /L) for the base vectors instead of
exp(ix) and exp(—ix) leads to the fact that expression (4)
describes the eigenvectors in the hard- and the soft-confined
ordered system too, except for the restriction that only pure
sine modes are allowed for the hard confinement and only
pure cosine modes for the soft. On the other hand, for the
latter systems also half-integral values for k, are allowed,
namely, k,=0,1/2,1,...,(L-1)/2 for the soft and k,
=1/2,1,...,L/2 for the hard. It can be easily seen that if a
mode exists with the same combination of trigonometric
functions in the PBC and the confined system, it remains
unchanged upon changing the boundary conditions. Other-
wise, in the hard-confined system, the mode multiindex
changes such that a cosine changes into a sine and the k, in
its argument is increased by 1/2. Correspondingly for the
soft-confined system, sines are changed into cosines and the
affected k, are reduced by 1/2.

Because (k;,k,,k3) is related to the wave number by ¢

=27/ La)\r’kf+k§+k§ (a being the lattice constant), this
leads to a reduction of ¢ in the case of soft confinement and
an increase for hard confinement. In consequence, the eigen-
frequency is reduced in the former case and augmented in the
latter. To derive a simple approximate rescaling relation be-
tween the eigenfrequencies in the PBC and confined situa-
tions, it is assumed that all modes are shifted by the same
amount Ag. Furthermore, instead of using the actual disper-
sion relation, the one-dimensional (1D), w=2K sin(ag/2), is
used, leading to a change in frequencies

0 =0+ V1 = (0 0y, Aw (5)

with Aw=KaAqg and w,,,=2 K. In a final step of approxi-
mation, this formula is applied for the disordered systems
although the concept of a wave number g does not hold in
this case.

Equation (5) now allows to rescale the reduced VDOS of
the PBC system to that of the confined systems via

PHYSICAL REVIEW B 81, 054208 (2010)

025

0.20

g(w)/o?

0.10

0.05 |

0.00

FIG. 9. Comparison of the simulated VDOS for the confined
systems (symbols) with that of the PBC system rescaled by rela-
tions (6) and (5) (lines). From bottom to top, the systems are: L
=15 hard (filled squares), L=23 hard (empty squares), L=23 soft
(empty triangles), and L=15 soft (filled triangles). To avoid overlap,
the curves are vertically shifted by 0.05 from system to system.

g'(0) _ (3)2(1_&’&;) ©)

o'/ do o

with o’ inserted from (5).

B. Test on the numerical model

Figure 9 shows a fit of the rescaled VDOS to the actual
numerical results from the confined systems. Aw and o,y
are treated as fit parameters (see Table III). The frequency
offset resulting from Eq. (5) for these parameters is also what
is shown as continuous curve in Fig. 8.

Considering the rough approximations used and the de-
viations visible in Fig. 8, the rescaling formula works sur-
prisingly well for the VDOS. The soft confined systems are
not described as well as the hard in the low-frequency re-
gion. This can be understood by the fact that Eq. (5) for
Aw<0 implies a reduction of ' also for the lowest w (even
resulting in negative values), which is not present in the real
transition PBC-soft for the (0,0,0) mode.

It is worth mentioning in which term of Eq. (6) the dif-
ference of the VDOS between confined and bulk systems is
primarily rooted: the shift (Aw=*0.123) of frequencies is
nearly invisible on the whole w scale. Also the differential
dw/dw’ is close to one. The term causing the large differ-
ences in the low-frequency region is (w/w’)?> because for
low frequencies, the small difference between w’ and w has
a large effect. Therefore, the difference in the VDOS is better

TABLE III. Parameters used in Eq. (5) to obtain the fits shown
in Fig. 9.

L Confinement type Aw Wax

15 Hard +0.123 £0.003 45%0.2
23 Hard +0.084 = 0.002 45%0.3
23 Soft -0.083 =0.002 4.27+0.08
15 Soft —0.123 =0.004 4.27+0.03
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FIG. 10. Plot of Aw from rescaling fits to confined systems of
different size. Filled symbols correspond to hard confinement and
empty symbols to soft confinement. The lines are fits of proportion-
alities Aw>x 1/L.

visible in the “reduced representation” g(w)/w?, which is
usually done to show the BP. If g(w) is plotted, the difference
is much less prominent and may be overlooked.

There is no way to calculate the exact value of Aw in
relation (5), therefore it was treated as a fit parameter. Nev-
ertheless, one would expect a certain scaling of Aw with the
size L for otherwise identical systems: in the ordered sys-
tems, the shift in eigenfrequencies results from a change in
the components of some mode index components k, by
*1/2, independent of the size. If these changes occur with
the same frequentness for systems of different size one,
would expect the effective change in the wave number to
scale as Ag=(27/La)Akoc 1/L. Consequently, the scaling for
the lower limit of the eigenfrequency offset should be Aw
o 1/L too. This relation is checked in Fig. 10 where the fit
parameter Aw is plotted vs 1/L for hard- and soft-confined
systems of different size. It can be seen that the expected
scaling relation with system size is excellently fulfilled.

The arguments used to derive relation (5) are also valid
for systems confined only in one or two dimensions with the
only difference that the number of mode indices shifted by
*1/2 due to the confined boundary conditions is smaller.
Therefore, the rescaling with relation (5) is possible for the
partially confined systems too (fits in Fig. 3). A deeper analy-
sis shows that the number of shifted modes is proportional to
the number of confined dimensions D, in the ordered sys-
tem. In consequence, one would expect AgocD, ¢ and for
the disordered system Awo D . As the inset in Fig. 3 dem-
onstrates, this proportionality is also fulfilled.

On the same grounds the, “compensation effect” of hard
and soft surfaces (Fig. 4) is not surprising: the eigenmodes of
the corresponding ordered system in the notation of Eq. (4)
have k,=(2n—1)/4 with integer n=1 in the spatial direc-
tion(s) a, which is/are “mixed-confined.” So there is always
one mode reduced by —1/4 and one increased by +1/4 cor-
responding to the sine and cosine modes of the PBC system.
The two opposite shifts lead to an unchanged average mode
density.
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FIG. 11. Reduced VDOS of salol confined in nanoporous silica
and of bulk salol. From bottom to top the systems are: confined
25 A (squares), 50 A (triangles), 75 A (diamonds), 200 A (hol-
low circles), and bulk (filled circles). To avoid overlap, the data are
vertically shifted by 0.25X 1073 ps? from system to system. The
lines result from rescaling the bulk VDOS (topmost data set, filled
circles) using Egs. (6) and (5) with w,,,=% and Aw from Table 1V.

C. Test on real systems

The validity of the rescaling procedure can also be tested
for real confined glasses. VDOS data was obtained by INS
from the organic glass-former salol in nanoporous silica in
Ref. 34. Figure 11 shows a comparison of the actual VDOS
in the confined systems with the rescaled VDOS of the bulk.
Because w,,,, does not significantly influence the scaling for
low w, it was set to infinity effectively reducing expression
(5) to @' =w+Aw, and only Aw was fitted here. The resulting
values are shown in Table IV. Considering that in the real
systems there is structural disorder in addition, and thus an-
other premise of Eq. (5) is not fulfilled, the agreement is
remarkably good.

Nevertheless, two shortcomings have to be mentioned: (i)
the agreement progressively worsens for smaller confine-
ment size. This may be due to a larger (relative) polydisper-
sity for the small pores. (i) Aw is expected to be inverse
proportional to the system size (as shown for the numerical
model systems in Fig. 10). The ratio of the confinement sizes
here leads to an expected ratio of 8 between the confinement
sizes 25 and 200 A: instead, the fit yields Aw(25 A)
=(0.241+0.006) ps' and Aw(200 A)=(0.076+0.001)
ps™! with a ratio of 3.2 only. This lack of the expected
system-size scaling was already noticed in Ref. 34 from a
simple sound wave picture.

TABLE IV. Values of Aw used to rescale the bulk VDOS to the
VDOS in confinement in Fig. 11.

Confinement size Aw
[A] [ps~']
25 0.241 +=0.006
50 0.182 =0.004
75 0.119+0.002
200 0.076 £ 0.001
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V. CONCLUSIONS

In summary, it could be shown that the model of a crys-
talline structure with force-constant disorder®!¢ reproduces
the experimentally observed confinement effect on the boson
peak (BP) when nonperiodic boundary conditions are intro-
duced. The maximum of the BP is shifted to higher frequen-
cies and the vibration density of states (VDOS) below the BP
is reduced for hard confinement, realized by rigid boundary
conditions (in comparison to periodic boundary conditions).
Soft confinement, realized by open boundary conditions, has
the opposite effect. The similarity between model and real
amorphous systems strengthens the point that the maximum
in the reduced VDOS observed in the disordered force-
constant model indeed corresponds to the BP observed in
experiments on structurally disordered materials.

The strength of the effect is proportional to the dimen-
sionality of the confinement and inverse proportional to its
size. Also, there is a compensation of hard and soft surfaces.
No fundamental change in the localization properties (level
statistics and participation ratio) due to confinement was ob-
served. There is also no significant difference of the sound
velocity induced by the variation of the boundary conditions.
Nevertheless, the low-frequency limit of the VDOS is af-
fected. The reason for this seeming contradiction is that the
homogenous distribution of modes in reciprocal space,
which is required for the Debye model, is significantly dis-
turbed by nonperiodic boundary conditions.

The model offers as explanation of the confinement effect
that the vibrational eigenfrequencies are shifted to higher
values for boundary conditions corresponding to hard con-
finement and to lower values for soft confinement. Inspection

PHYSICAL REVIEW B 81, 054208 (2010)

of the corresponding force-ordered crystalline systems re-
veals as underlying reason that the modes, which are not
allowed due to the ‘“confinement” boundary conditions
“evade” to higher or lower frequency for hard and soft con-
finement, respectively.

A common way to explain confinement effects in glass-
forming materials is to postulate a cooperativity length scale,
which is cut off by the confinement size.>> For the model
systems studied here, this explanation can be ruled out be-
cause the effect on the BP occurs only if the boundary con-
ditions are changed and not just by a change in the size of the
periodic boundary conditions (PBC) system. Another expla-
nation suggested earlier was the suppression of surface
modes close to the confinement boundary.’® As there is no
change in the general localization properties, this also seems
not to be applicable here.

The overall change in eigenfrequencies by modification of
the boundary conditions can be expressed by a simple rela-
tion, Eq. (5). From this, a rescaling of the VDOS can be
derived, which works well for the numerical model systems.
It is also applicable to the VDOS of real experimental sys-
tems, but there the agreement is less precise and the size
scaling not fulfilled. The reason for this may be the imperfect
realization of the confinement size and shape in the experi-
ment. But the qualitative agreement is an indication that con-
finement of effect of the BP of real systems is of the same
nature. A crucial experiment would be to look for the “com-
pensation” (Fig. 4) in extremely thin films of less than 5 nm
thickness.
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