001     907533
005     20240711114025.0
024 7 _ |a 10.1063/5.0083613
|2 doi
024 7 _ |a 1070-664X
|2 ISSN
024 7 _ |a 1089-7674
|2 ISSN
024 7 _ |a 1527-2419
|2 ISSN
024 7 _ |a 2128/31116
|2 Handle
024 7 _ |a altmetric:126601664
|2 altmetric
024 7 _ |a WOS:000791279200003
|2 WOS
037 _ _ |a FZJ-2022-02066
082 _ _ |a 530
100 1 _ |a Sackers, M.
|0 P:(DE-Juel1)180408
|b 0
|e Corresponding author
245 _ _ |a Plasma parameters and tungsten sputter rates in a high-frequency CCP
260 _ _ |a [S.l.]
|c 2022
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651674337_29628
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Monitoring and investigating the fusion plasma in ITER will be crucial to pave the way to a fusion power plant. However, the harsh conditions in the vacuum vessel are detrimental for the optical diagnostics systems. Replacing the element with a direct line of sight to the fusion plasma by a metallic mirror shifts the problem to this component. The flux of impurities onto these mirrors accumulate to deposits, which degrade their optical properties over time. It has been proposed to address this issue by igniting discharges in front of the mirrors during the maintenance phases allowing the deposited material to be sputtered away and recover the mirror properties. To further the knowledge for such an option, in this work, plasma parameters and sputter rates in a high-frequency (60 MHz) capacitive discharge in argon at pressures below 10 Pa are studied. The powered electrode consists of tungsten as a cheap rhodium proxy—the material of the metallic mirrors in ITER—and to simulate tungsten deposition. Its size is equivalent to a mirror for charge-exchange recombination spectroscopy at ITER (8.5 cm × 18 cm). The discharge is studied using and interpreting voltage measurements, microwave interferometry, electrical probe measurements, and optical emission spectroscopy. These investigations provide the opportunity to identify the optimal conditions for the process based on various requirements, such as damage threshold of the mirror crystal and severity and type of contamination.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Busch, Carsten
|0 P:(DE-Juel1)188509
|b 1
700 1 _ |a Tsankov, Ts. V.
|0 0000-0002-7937-486X
|b 2
700 1 _ |a Czarnetzki, U.
|0 0000-0002-5823-1501
|b 3
700 1 _ |a Mertens, Ph.
|0 P:(DE-Juel1)4596
|b 4
700 1 _ |a Marchuk, O.
|0 P:(DE-Juel1)5739
|b 5
773 _ _ |a 10.1063/5.0083613
|g Vol. 29, no. 4, p. 043511 -
|0 PERI:(DE-600)1472746-8
|n 4
|p 043511 -
|t Physics of plasmas
|v 29
|y 2022
|x 1070-664X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907533/files/5.0083613.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907533/files/Postprint_Sackers.pdf
909 C O |o oai:juser.fz-juelich.de:907533
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)4596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)5739
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS PLASMAS : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: AIP Publishing 2021
|2 APC
|0 PC:(DE-HGF)0102
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21