000907537 001__ 907537
000907537 005__ 20240712084459.0
000907537 0247_ $$2doi$$a10.1016/j.nme.2021.100972
000907537 0247_ $$2Handle$$a2128/31118
000907537 0247_ $$2WOS$$aWOS:000657474100006
000907537 037__ $$aFZJ-2022-02069
000907537 082__ $$a624
000907537 1001_ $$0P:(DE-HGF)0$$aKärcher, A.$$b0
000907537 245__ $$aDeuterium retention in tungsten fiber-reinforced tungsten composites
000907537 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000907537 3367_ $$2DRIVER$$aarticle
000907537 3367_ $$2DataCite$$aOutput Types/Journal article
000907537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669273542_12375
000907537 3367_ $$2BibTeX$$aARTICLE
000907537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907537 3367_ $$00$$2EndNote$$aJournal Article
000907537 520__ $$aIn future fusion reactors, plasma-facing materials (PFMs) have to withstand unique conditions such as high temperatures, ion and neutron irradiation. Tungsten (W) has been established as main candidate material due to its favorable properties regarding the fusion environment but brings one major challenge: Its brittleness at moderate temperatures can lead to failure of tungsten components. Tungsten fiber-reinforced tungsten (Wf/W), a tungsten matrix containing drawn tungsten fibers, was developed to mitigate this problem by using extrinsic toughening mechanisms to achieve pseudo-ductility. The deuterium (D) retention in Wf/W manufactured by chemical vapor deposition (CVD) has been investigated using Wf/W single layered model systems consisting of a single plane of unidirectional tungsten fibers embedded in a tungsten matrix produced by CVD. Various parameters with potential influence on the D retention, such as the choice of an erbium oxide interface and potassium doping, have been included in the investigation. The samples have been ground to varying distances between surface and fiber plane - exposing distinct details of the Wf/W microstructures at the surface. The samples were exposed to a low temperature D plasma at 370 K for 72 h resulting in a total fluence of 1025 D/m2. The D retention of all samples was measured by nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS). The D retention in Wf/W composites is higher than in reference samples made from hot-rolled W by factors between 2 and 5. In addition, a comparison of NRA and TDS data indicates that D penetrates faster into the depth of Wf/W material than into hot-rolled tungsten.
000907537 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000907537 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907537 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b1
000907537 7001_ $$0P:(DE-HGF)0$$aAlmanstötter, P.$$b2
000907537 7001_ $$0P:(DE-HGF)0$$aManhard, A.$$b3
000907537 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b4
000907537 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b5$$eCorresponding author
000907537 7001_ $$0P:(DE-HGF)0$$aHunger, K.$$b6
000907537 7001_ $$0P:(DE-HGF)0$$aMaier, H.$$b7
000907537 7001_ $$0P:(DE-Juel1)169774$$aRaumann, L.$$b8
000907537 7001_ $$0P:(DE-Juel1)174255$$aSchwalenberg, D.$$b9
000907537 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b10
000907537 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.100972$$gVol. 27, p. 100972 -$$p100972 -$$tNuclear materials and energy$$v27$$x2352-1791$$y2021
000907537 8564_ $$uhttps://juser.fz-juelich.de/record/907537/files/1-s2.0-S2352179121000569-main.pdf$$yOpenAccess
000907537 8564_ $$uhttps://juser.fz-juelich.de/record/907537/files/Postprint_Coenen_Deuterium%20retention%20in%20tungsten.pdf$$yOpenAccess
000907537 909CO $$ooai:juser.fz-juelich.de:907537$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b5$$kFZJ
000907537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169774$$aForschungszentrum Jülich$$b8$$kFZJ
000907537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174255$$aForschungszentrum Jülich$$b9$$kFZJ
000907537 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000907537 9141_ $$y2022
000907537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000907537 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907537 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907537 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000907537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000907537 920__ $$lyes
000907537 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000907537 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x1
000907537 9801_ $$aFullTexts
000907537 980__ $$ajournal
000907537 980__ $$aVDB
000907537 980__ $$aI:(DE-Juel1)IEK-4-20101013
000907537 980__ $$aI:(DE-Juel1)IEK-5-20101013
000907537 980__ $$aUNRESTRICTED
000907537 981__ $$aI:(DE-Juel1)IFN-1-20101013
000907537 981__ $$aI:(DE-Juel1)IMD-3-20101013
000907537 981__ $$aI:(DE-Juel1)IMD-3-20101013