000907552 001__ 907552
000907552 005__ 20250912110145.0
000907552 0247_ $$2doi$$a10.3389/fnimg.2022.869454
000907552 0247_ $$2Handle$$a2128/31570
000907552 0247_ $$2altmetric$$aaltmetric:128419199
000907552 0247_ $$2pmid$$a37555171
000907552 0247_ $$2WOS$$aWOS:001537169300001
000907552 037__ $$aFZJ-2022-02079
000907552 082__ $$a610
000907552 1001_ $$0P:(DE-Juel1)177936$$aPais, Patricia$$b0$$ufzj
000907552 245__ $$aPre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications
000907552 260__ $$aLausanne$$bFrontiers Media SA$$c2022
000907552 3367_ $$2DRIVER$$aarticle
000907552 3367_ $$2DataCite$$aOutput Types/Journal article
000907552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658907334_15482
000907552 3367_ $$2BibTeX$$aARTICLE
000907552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907552 3367_ $$00$$2EndNote$$aJournal Article
000907552 520__ $$aOver the past 30 years, brain function has primarily been evaluated non-invasively using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc., their relatively inferior spatial localization compromises the routine use of GE-BOLD in laminar applications. Here, in an attempt to rescue the benefits of GE sequences, we evaluated the effect of existing pre-processing methods on the spatial localization of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25 mm3 with near whole-brain coverage. The methods assessed here apply to both task and resting-state fMRI data assuming the availability of reconstructed magnitude and phase images.
000907552 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907552 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907552 7001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b1$$ufzj
000907552 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b2$$eCorresponding author$$ufzj
000907552 773__ $$0PERI:(DE-600)3123824-5$$a10.3389/fnimg.2022.869454$$gVol. 1, p. 869454$$p869454$$tFrontiers in neuroimaging$$v1$$x2813-1193$$y2022
000907552 8564_ $$uhttps://juser.fz-juelich.de/record/907552/files/fnimg-01-869454.pdf$$yOpenAccess
000907552 8767_ $$d2022-12-13$$eAPC$$jDeposit$$z1615 USD
000907552 909CO $$ooai:juser.fz-juelich.de:907552$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177936$$aForschungszentrum Jülich$$b0$$kFZJ
000907552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b1$$kFZJ
000907552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000907552 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907552 9141_ $$y2022
000907552 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907552 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907552 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907552 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000907552 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000907552 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000907552 9801_ $$aFullTexts
000907552 980__ $$ajournal
000907552 980__ $$aVDB
000907552 980__ $$aUNRESTRICTED
000907552 980__ $$aI:(DE-Juel1)INM-4-20090406
000907552 980__ $$aI:(DE-Juel1)INM-11-20170113
000907552 980__ $$aI:(DE-Juel1)VDB1046
000907552 980__ $$aAPC