Hauptseite > Publikationsdatenbank > Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications > print |
001 | 907552 | ||
005 | 20250912110145.0 | ||
024 | 7 | _ | |a 10.3389/fnimg.2022.869454 |2 doi |
024 | 7 | _ | |a 2128/31570 |2 Handle |
024 | 7 | _ | |a altmetric:128419199 |2 altmetric |
024 | 7 | _ | |a 37555171 |2 pmid |
024 | 7 | _ | |a WOS:001537169300001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02079 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pais, Patricia |0 P:(DE-Juel1)177936 |b 0 |u fzj |
245 | _ | _ | |a Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications |
260 | _ | _ | |a Lausanne |c 2022 |b Frontiers Media SA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1658907334_15482 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Over the past 30 years, brain function has primarily been evaluated non-invasively using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc., their relatively inferior spatial localization compromises the routine use of GE-BOLD in laminar applications. Here, in an attempt to rescue the benefits of GE sequences, we evaluated the effect of existing pre-processing methods on the spatial localization of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25 mm3 with near whole-brain coverage. The methods assessed here apply to both task and resting-state fMRI data assuming the availability of reconstructed magnitude and phase images. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Yun, Seong Dae |0 P:(DE-Juel1)141899 |b 1 |u fzj |
700 | 1 | _ | |a Shah, N. Jon |0 P:(DE-Juel1)131794 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.3389/fnimg.2022.869454 |g Vol. 1, p. 869454 |0 PERI:(DE-600)3123824-5 |p 869454 |t Frontiers in neuroimaging |v 1 |y 2022 |x 2813-1193 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907552/files/fnimg-01-869454.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907552 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177936 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)141899 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131794 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|