001     907570
005     20230522125347.0
024 7 _ |a 10.1109/TCSII.2022.3160304
|2 doi
024 7 _ |a 1057-7130
|2 ISSN
024 7 _ |a 1549-7747
|2 ISSN
024 7 _ |a 1558-125X
|2 ISSN
024 7 _ |a 1558-3791
|2 ISSN
024 7 _ |a 2128/31120
|2 Handle
024 7 _ |a WOS:000790814000021
|2 WOS
037 _ _ |a FZJ-2022-02087
082 _ _ |a 620
100 1 _ |a Ntinas, Vasileios
|0 0000-0002-2367-5567
|b 0
245 _ _ |a Toward Simplified Physics-Based Memristor Modeling of Valence Change Mechanism Devices
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674040958_31241
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Memristors are promising nanoelectronic devices for the implementation of future AI-driven sensor-processor electronic systems, which are essential for the ongoing digitalization of our world. Accurate and computationally cost-effective models for the manufactured memristors are essential for the design of such systems, especially for the simulation of large circuits. In this brief we address the simplification of the JART memristor model, a generic physics-based model of Valence Change Mechanism (VCM) memristors which accurately describes the dynamic behavior of fabricated memristor devices. Furthermore, the proposed model and simplification methodology have the potential to capture the dynamics of a wide range of memristor devices. Importantly, the implicit description of the current through the memristor is replaced by an explicit mathematical relationship. The proper reproduction of memristor dynamics, verified by applying the system-theoretic Dynamic Route Map (DRM) graphical analysis tool, applicable to first-order systems, can be observed through the proposed simplified model and enables the time-efficient simulation of large arrays of VCM devices.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 1
536 _ _ |a BMBF-16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 2
536 _ _ |a SFB 917 B01 - Schnelle transiente, elektrische Analyse von resistiven Schaltphänomenen (B01) (202259360)
|0 G:(GEPRIS)202259360
|c 202259360
|x 3
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ascoli, Alon
|0 0000-0003-4026-9648
|b 1
700 1 _ |a Messaris, Ioannis
|0 0000-0002-4286-6553
|b 2
700 1 _ |a Wang, Yongmin
|0 P:(DE-Juel1)188522
|b 3
|u fzj
700 1 _ |a Rana, Vikas
|0 P:(DE-Juel1)145504
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 5
700 1 _ |a Tetzlaff, Ronald
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1109/TCSII.2022.3160304
|g Vol. 69, no. 5, p. 2473 - 2477
|0 PERI:(DE-600)2028232-1
|n 5
|p 2473 - 2477
|t IEEE transactions on circuits and systems / 2
|v 69
|y 2022
|x 1057-7130
856 4 _ |u https://juser.fz-juelich.de/record/907570/files/TCAS-II-12735-2022_Proof_hi.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907570/files/Toward_Simplified_Physics-Based_Memristor_Modeling_of_Valence_Change_Mechanism_Devices.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:907570
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188522
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145504
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T CIRCUITS-II : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21