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It has been realized that the distinction between social-
psychological effects and physical effects in pedestrian crowds
is complex, and so the relevance of social psychology for
the properties of pedestrian streams is still discussed
controversially. Although physics-based models appear to
capture many properties rather accurately, it was argued that
simple systems of self-driven particles could not explain certain
emergent phenomena. In particular, results from a recent
empirical study of pedestrian flow at bottlenecks have been
interpreted as indicating the relevance of social psychology
even in relatively simple scenarios of crowd dynamics. The
study showed a surprising dependence of the density near the
bottleneck on the width of the corridor leading to it. The
density increased with increasing corridor width, although a
wider corridor provides more space for pedestrians. It has been
argued that this observation is a consequence of social norms,
which trigger the effect by a preference for queuing in such
situations. However, convincing evidence for this hypothesis is
still missing. Here, we reconsider this scenario from a physics
perspective using computer simulations of a simple microscopic
velocity-based model.
1. Introduction
Arguably the most important scenario in crowd motion is
bottlenecks, i.e. local restrictions of the flow. Such bottlenecks
appear in different situations, e.g. people entering a lecture hall
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Figure 1. Photos of the experiment modified from [3]. (a) The corridor set-up. (b) The unrestricted set-up.
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or evacuations from large rooms or buildings. Due to their importance, several experimental studies on
bottlenecks have been performed during the last two decades [1–13] in an effort to understand the
relevance of various factors on the flow properties of pedestrian streams. The results show that a
multitude of factors like the geometry of the bottleneck, its width, the number of pedestrians and
their motivational mode have a significant impact on the flow and density. A comprehensive
summary of the different effects found empirically in bottleneck flow was recently published and
discussed the controversy between different experimental results [11].

What is not well understood up to now is the role of human psychology in such (relatively) simple
scenarios. It could be argued that this is different for emergency situations and crowd disasters, where
the occurrence of casualties and injuries is often attributed to ‘panicking’ pedestrians [14,15].
However, this interpretation has been thoroughly challenged by many studies showing clearly that
behaviour colloquially associated with the notion of panic, e.g. irrational and competitive behaviour
that leads to the trampling of falling pedestrians [14,16], is actually almost never observed [16].

Besides empirical studies, many investigations use computer simulations based on a wide range of
modelling approaches [17–27]. These provide the means to investigate microscopic interactions
governing the dynamics of crowds in a wide range of situations, from normal modes [25] to high
motivation egress and emergency evacuations [18,19].

More detailed studies of bottlenecks have revealed a number of interesting self-organization
phenomena. In 2005, Hoogendoorn and Daamen experimentally observed a boundary-induced
formation of lanes inside a spatially extended bottleneck [1] where the pedestrians walk side by side
in different ‘lanes’. In narrow bottlenecks, where due to the shoulder width two separate lanes would
be wider than the bottleneck, a zipper effect occurs. In this case, two lanes can overlap where
pedestrians of one lane partially occupy the longitudinal gap between two successive pedestrians in
the neighbouring lanes, as in a zipper. With increasing width of the bottleneck, the lateral distance
between lanes increases, whereas the longitudinal gap becomes smaller. This allows for a denser
configuration of pedestrians and leads to a linear increase in the capacity for such zipper-like
intertwined lanes instead of a stepwise increase that would be expected for non-overlapping lanes [2].

The aim of this study is to illustrate the difficulty in investigating and distinguishing social
psychological phenomena affecting the behaviour of pedestrians from physical effects. This can lead to
the assertion of social psychological influences, where physical effects are sufficient to explain the
phenomena. We illustrate this for a specific example of pedestrians’ behaviour at bottlenecks based on
two recent experimental studies [3,4]. Experiments performed in 2013 [3] aimed to understand the
relevance of social norms, specifically which rules of conduct apply and when these rules are
addressed. The study compared the behaviour and stream properties for two different spatial
structures of guidance barriers near an entrance that act as bottlenecks. The two set-ups were a
semicircle and a corridor scenario with guiding barriers from the side in front of two entrances
(figure 1) as is often used by crowd managers. In both cases, the participants were distributed loosely
to ensure low initial densities. As motivation, the participants were told that the first to pass through
the entrance would ensure a good place in front of a stage in a concert hall. Surprisingly, it was found
that the densities in front of the entrance were higher in the semicircle set-up. The corridor scenario
results in significantly lower densities and motion in ordered lanes with almost no pushing. By
contrast, in the semicircle set-up participants tried to fill empty spaces quickly, which sometimes
resulted in pushing others. A possible interpretation of these observations is that the physical
boundary conditions influenced the participants’ social behaviour. In order to elucidate this further
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and to exclude other potential influences, only corridor width and motivation were varied. These
experiments were performed in a straight corridor of variable width (between 1.2 m and 5.6 m) to
reduce the influence of the geometry. Furthermore, runs with different motivations (high and low)
were performed. For the high motivation case, the participants were told that only a restricted
number of front row positions with a good view in a concert hall are available.

Two major effects were observed. For a given motivational mode, the density in front of the
bottleneck increases with the corridor width. Changing from low to high motivation, the density
increases for all corridor widths (figure 5a). To gain more insight into the influence of social norms,
the participants were asked to fill out a questionnaire. The analysis casts doubt on the initial claim
that the dynamics cannot be explained without social psychology, as social behaviour like queuing
norms could not be detected. By contrast, a theoretical study based on simulations with a cellular
automata model [18] found some indications for an increasing density. However, due to the discrete
nature of cellular automata and the resulting coarse (spatial) resolution, the microscopic interactions
and emergent phenomena could not be studied in sufficient detail. Therefore, in this study, we will
use a different model to investigate the experiment by Adrian et al. [4] theoretically. Our approach is
based on a velocity-based model with rather simple interactions between the agents. Furthermore, we
allow only for a minimal variance in the parameters modelling the individual behaviour.

On a technical side, the main goal is to investigate whether the experimental observation, the increase
of the density with the width of the corridor, can be reproduced with a model not requiring complex
inner functions for the agents’ behaviour. Also, it is investigated whether another experimental
observation, the change of the density with the motivation, can be reproduced by adapting a model
parameter that describes how pedestrians close gaps that arise. The general aim is not to diminish the
possible influences of social psychology on crowd behaviour, but to highlight the difficulty of
distinguishing social psychological influences from physical effects and the need for a framework that
adequately addresses this problem.
2. Experimental data
The data [4,28] from the experiments conducted in a straight corridor are reanalysed in this study, to
allow for a better comparison with the simulations. A summary of the experimental conditions in
each run is given in table 1. The geometry of the corridor is illustrated in figure 3b. Measurements for
the mean density are made in a rectangular area between x ¼ f�0:4, 0:4gm and y ¼ f0:5, 1:3gm. The
outflow and exit times are measured at the y = 0 m line. The methodology for determining the mean
density is described in the section ‘Material and methods’. The mean density time series for the
different experimental runs are shown in figure 2 both for the experiments with low and high
motivation. These are all runs considered in this study. Runs with fewer than 42 participants (i.e. 20–
25 participants) have been discarded here since it was not clear whether a consistent steady state has
been reached. In the experimental study, the measurement time interval for the mean density is from
5 s to 10 s to have comparable conditions, considering the varying and limited number of participants.
In this study also the interval between 10 s and 15 s is measured to be closer to a steady state as can
be observed for most runs in figure 2. Only the runs for b = 4.5 m in the high motivational case
(figure 2b) do not reach a consistent steady state as the mean density quickly peaks between 5 s and
10 s and decreases from there on. The mean values for the experiments in the 5–10 s and 10–15 s
interval are shown in figure 5a.
3. Model
The simulations use a velocity-based model [17] with simple agent interactions and a noise term in the
desired direction. The interactions are similar to volume exclusion in cellular automata models, while the
desired direction is encoded in a floor field or potential. The simulations are performed using JuPedSim
[29]. The model is a variation of the collision-free speed model introduced by Tordeux et al. [23] without
exponential repulsive interactions between the agents. The velocity vector vi of agent i is determined by

vi ¼ Vðsiðxi, xj, . . .ÞÞ � ei, ð3:1Þ
with ei the movement direction and

VðsiÞ ¼ minfv0, maxf0, ðsi � lÞ=Tgg: ð3:2Þ



Table 1. Summary of the experimental conditions in [4] relevant for this study. Run is an identifier for the specific run of the
experiment with corridor width b, the motivation being high (hi) or low (lo) respectively and the number of participants N.

run width b in m motivation N

030/040 5.6 hi/lo 75

050/060 4.5 hi/lo 42

070/080 2.3 hi/lo 20

090/100 1.2 hi/lo 24

110/120 1.2 hi/lo 63

150/160 5.6 hi/lo 57

170/180 1.2 hi/lo 25

190/200 3.4 hi/lo 22

230/240 2.3 hi/lo 42

200/260 4.5 hi/lo 42

270/280 3.4 hi/lo 67
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Figure 2. Time series of the Voronoi density from the experiments [4] in the straight corridor for low motivation (a) and high
motivation (b). The blue and grey areas mark the region between 5 and 10 s and 10 and 15 s. The measurement of the
density is conducted in the area according to figure 3b.
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The speed of agent i is therefore determined by the desired speed v0, the diameter of the agent l, the
minimal spacing si and the slope factor T. The minimal spacing is given by

si ¼ min
j[Ji

si,j, ð3:3Þ

where Ji is the set of agents in the headway of agent i,

Ji ¼ j, ei � ei,j � 0 ^ je?i � ei,jj , l
si,j

� �
: ð3:4Þ

The vector e?i is perpendicular to ei. The set Ji is illustrated in figure 3a.
The desired direction e0 is determined by a floor field [22]. In this case, the continuous floor field

consists of two parts, which are implemented into JuPedSim. To find the quickest way to the exit, the
‘Eikonal equation’ [30]

jrcðxÞj ¼ FðxÞ, x [ V, cjdV ¼ 0 ð3:5Þ
is solved on the spatial domain V, where dVmarks the target domain. The slowness field F(x) determines
the speed of a particle in the floor field v = 1/F(x), while c(x) is the time-cost to the target domain. The
interactions with the wall are built into the floor field by a slowness field near the walls. The slowness is
linearly decreasing with the distance to the wall, with a minimal value of 0. This point is the wall-
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Figure 3. (a) Illustration of the collision-free speed model. Agents that overlap with the grey area are in the set Ji. (b) Illustration of
the geometry for all scenarios. The blue square is used for density measurement, the red dashed line for flow measurement.
(c) Illustration of the speed function (3.2). (d ) Illustration of the floor field with wall avoidance. The colour illustrates the time
cost c(x) and the vectors indicate the direction of rcðxÞ in (3.5).
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avoidance distance dw set to 0.25m in the simulations. For more details, see [29,31]. An example of a floor
field is represented in figure 3d. The resolution for the floor field used in the simulations is Δh = 0.01 m.
Because of the collision-free property of the model [23], agents can get into a deadlock, setting their speed
to 0. To solve this problem, a white noise term is added to the desired direction which also captures the
imperfect choice of direction:

ei ¼ e0 þ z

Z
: ð3:6Þ

e0 is the direction indicated by the floor field (i.e. the desired direction of the motion) and ζ a random
direction vector. Both components of ζ are determined by a normal distribution with zero mean and
variance σ. The vector is normalized by Z.
3.1. Model parameters and psychological factors
The parameters of the agent-based model are strongly connected with fundamental diagrams, which are
empirical relations between flow, density and speed. A special representation of the fundamental
diagram is the speed distance function equation (3.2), including the model parameters v0 the desired
speed, T the slope factor and l the minimal distance between agents. Experimental studies on the
fundamental diagram have shown that they depend on a set of individual properties P = {P1, P2,…} of
pedestrians like culture, body height, gender, or motivation [32–37]. However, they also depend
on various environmental factors E = {E1, E2,…} like the width of the facility, the presence of
rhythm or background music [38,39] or visibility [40]. In the model, this would translate to a
dependence of the parameters on these factors, e.g. Ti = fi(P, E) and vi,0 = gi(P, E) for the agent i. Thus,
the parameters of the agent-based model describe environmental, physical as well as psychological
properties of pedestrians.
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The current state of research does not allow identifying a set of major factors or even to estimate a
functional form. Moreover, in general, it is challenging to disentangle the influences of these factors.
Adding to this complexity, the parameters are also connected to a stimulus–response mechanism of
perceiving the environment and properties of the musculoskeletal system, leading, for example, to the
movement of a pedestrian by steps. Due to this complexity, many simplifications have been made for
a viable theoretical description.

3.2. Parameters and initial conditions
The desired speed is fixed at v0 = 1.34 m s−1 which is the empirically estimated mean walking speed
for unimpeded pedestrians [41]. The other free model parameters are estimated using experimental
data [4]. Agents are represented by non-deformable discs with fixed diameter l. The exclusion
property of the model then yields an upper bound for the density. To estimate the agent diameter
from the experimental data, the maximum density ρmax which is slightly above 9 m−2 during high
motivation runs is taken as a pivot (figure 2).

Assuming that this maximum density corresponds to a (hexagonal) dense packing of discs, one finds
that ra = 0.175 m corresponds to a maximal density of ρ≈ 9.4 m−2. Simulations with this value yield good
results. See section ‘Material and methods’ for more details.

3.2.1. Motivation and slope factor T

As discussed above, certain simplifications have to be made for a viable description. We assume that the
parameters do not depend on the agents, e.g. Ti = T for all i, and do not change during an experimental
run. The first assumption is reasonable as experiments are usually performed with a relatively
homogeneous group of participants (e.g. students). The effects of the different levels of motivation
studied in the experiments [4] are modelled by different values of T. The idea behind using T as the
parameter to model the effect of motivation is that with highly motivated and jostling pedestrians,
any gap between neighbours will be filled immediately, corresponding to a smaller value of
T. Pedestrians moving with low motivation keep distance in dependence of the walking speed, which
corresponds to a larger value for T. Figure 3c depicts the speed function (3.2) for different values of
T. The slope factor T determines at which distance agent i reacts to the closest neighbouring agent in
its path (i.e. a neighbouring agent j that satisfies (3.3)) and the change of speed in dependence of the
distance between pedestrians i and j. In the limit T→ 0, the speed function reduces to simple volume
exclusion, where an agent moves with its desired speed even if the distance to the neighbour is small.
In the case of collision with a neighbouring agent, the velocity is instantaneously set to 0.

The values are chosen to be T = 1.3 s for agents with low motivation and T = 0.1 s for high motivation,
as these values fit well to the data. In the simulation, an agent with low motivation reacts to an agent in
its headway when the distance si− l⪅ 2 m. For an agent with high motivation, the critical distance to
trigger a reaction is si− l⪅ 0.5 m (see equations (3.2)–(3.4)).

3.2.2. Initial density and population size

Next, we analyse the influence of the initial density ρi on the mean density ρ in the measurement area during
the measurement time. Figure 4a depicts the mean value of the density between 10 s and 15 s with respect
to the initial density for different corridor widths. The initial density has a non-negligible influence on
the density for the measurement interval. This influence is especially pronounced for narrow corridors
(b < 3.4 m) and weakens for wide corridors (b > 3.4 m) as ρi > 2 m−2. The initial Voronoi densities ρi in
the experiment are roughly identical and can be found between 1.5 and 3.0 m−2 (figure 4c). To meet
this criterion, the corridor length lc is adapted so that the agents can be evenly distributed over the area of
the corridor and meet the initial conditions. The length is set to lc =N/bρi up until the corridor length
would be smaller than 7m (the corridor length in the experiment). From there, the corridor length is set
constant at 7m. The initial density ρi is chosen randomly from a uniform distribution Uð2:0, 3:0Þ. Figure 4c
shows the experimental initial densities compared to the simulation. For corridors with b < 3.4 m the
corridor length lc < 7 m and have therefore a larger range of values. As already discussed, runs from the
experiment with fewer than 42 participants are excluded.

Figure 4b illustrates that in the model for N > 40 the number of agents has a limited but not negligible
influence on the mean density. To obtain comparable results for the mean Voronoi density with respect to
the corridor width, the number of agents in the simulation is set constant to N = 55 in the middle of the
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Figure 4. (a) Mean Voronoi density after 10 s in respect to the initial density in the corridor for different corridor width b. (b) Mean
Voronoi density after 10 s in respect to the corridor width b for a different number of agents N. (c) Mean initial Voronoi densities ρi
in respect to the corridor width. The initial density is calculated for the whole corridor from ymin = 0 m to ymax = 7.0 m. Comparison
of experimental and simulation densities for high and low motivation.
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range of participants. The simulation runs are calculated in a range of b = [0.8, 7.0] m in 0.1 m steps. For
every value of b, 500 simulation runs with random initial conditions are conducted. This makes 31 000 for
each motivation T = {0.1, 1.3} s and 62 000 simulations in total for the main analysis. The model
parameters are summarized in table 2.
4. Results
In the experimental data, the measurement interval for the mean density was chosen to be between 5 s
and 10 s. This interval was chosen to have comparable results as the participants’ number varies between
the runs and, as discussed above, influences the mean density. Since the simulations are controlled for the
agent number, it is also interesting to look at a second interval and compare it to the experimental data.
Here, the interval from 10 s to 15 s is chosen. Figure 5a shows the simulation results and the experimental
data. The error bars show the 95% interval of the 500 runs conducted. The simulations reproduce the
increase in density with the corridor width b without the adjustment of any other parameter for a
given motivation. The increase in density from low to high motivation can be reproduced by only
adjusting the slope factor T. The mean density measured between 10 and 15 s shows a monotonic
increasing behaviour until it reaches a saturation point at about b = 3.2 m. For low motivation (T =
1.3 s), the density is non-monotonic. The experimental data lie with 19/28 points mostly inside the
95% interval, while the points outside do so by a small margin. Especially, the runs for b < 4.5 m are
in good concordance with the experimental data. The runs for b = 4.5 m show the largest deviation
from the simulation results for high motivation. As discussed in the section ‘Experimental data’, the
high motivation experimental runs for b = 4.5 m do not reach a steady state. In the low motivation
data, there is an outlier for b = 5.6 m where the density is comparable to that of the high motivation
scenario. This is the largest run with N = 75 participants. Figure 4b shows the density for low



Table 2. Summary of model parameters and values used in the simulations.

parameter variable value

slope factor (motivation) T {0.1, 1.3} s

desired velocity v0 1.34 m s−1

agent size (hardcore exclusion) l 0.35 m

noise variance σ 0.7

population N 55

floor field resolution Δh 0.01 m

wall avoidance distance dw 0.25 m

corridor width b [0.8, 7.0] m
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Figure 5. (a) Top: mean density in the measurement area calculated with the Voronoi method from 5 to 10 s for different values of
the slope factor T and motivations in the experimental data. The simulation runs were conducted 500 times for each corridor width
b. The error bars show where 95 % range of the mean. Bottom: the same as above from 10 to 15 s. (b) Density fields for different
motivations and corridor width b. Left column depicts the experimental data, while the right column shows the simulation results.
From top to bottom, the motivation is alternating between high motivation (T = 0.1 s) and low motivation (T = 1.3 s). The corridor
width is b = 1.2 m in the top panels and b = 3.4 m in the bottom panels.
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motivation and a different number of participants, but the increase in the number of agents cannot
explain the high value of the measured density.

To improve the understanding of the overall dynamics in the corridor, the density field of a single run
is calculated according to equation (5.3). Figure 5b shows the density fields for b = 1.2 m and b = 3.4 m
from the experiments and simulations. For low motivation and b = 1.2 m, two equally dense lanes
form in both the experiments and the simulations, which merge near the exit. With high motivation,
three lanes form in the simulation and the overall density increases. In the experimental case,
the overall density increases, but it is not possible to identify clear lanes. For low motivation with
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b = 3.4 m, clear lane formation is also evident in both the experiments and the simulation. A noticeable
difference is that while the agents in the simulation are broadly distributed over the whole corridor near
the y = 0 line, the distribution of participants is wedge-shaped near the exit. One potential reason for this
are the barricades in the experiment, which have metal gratings in front of them (figure 9c). These seem
to be mostly avoided by the participants of the experiment, especially in the low motivation runs, and
therefore could act as an obstacle. This becomes clearer when looking at the videos of the
experiments, which can be accessed at [42]. In the simulations, this circumstance was not taken into
account in order to keep the geometry simple as the wedge shape reduces or disappears altogether
for the case of high motivation (figure 9d ). In the high motivation case, the participants in the
experiment and the agents in the simulation are more compressed than in the low motivation case.
For both motivations, distinct lanes can be observed. The wedge shape in the density profile is still
noticeable, but less pronounced in the experimental data.

A clearer picture of the dynamics in the region of increasing density compared to the saturated region
is obtained in figure 6, where the mean density field of selected corridor widths is depicted of all 500
runs. The top row shows runs with b < 3.2 m, while the bottom row depicts runs with b > 3.2 m. It is
visible how the widening of the corridor has a major influence on the dynamics of the evacuation
process. As b increases, new lanes form and the interaction angle at the merger point between the
direction of the agents and the direction to the exit steepens. This increases the potential for conflicts
near the exit and thus the density. For b > 3.2 m, the influence of the corridor width is small as the
formation of new lanes has little influence on the situation near the bottleneck. Electronic
supplementary material, figure S2, shows an analogous comparison for high motivation simulations
presenting a similar behaviour. Figure 7a depicts the distribution of the interaction angle, as defined
in figure 7b, between two agents for varying b in a radius of r = 1 m of the point r = 0. In this region,
the merging of lanes takes place (figure 6). The interaction angle is defined as the angle between the
noiseless desired direction of one agent and the agent they are interacting with (i.e. the agent which
fulfils the conditions according to equations (3.3) and (3.4)). Noiseless means that at every step of the
simulation with noise acting on the dynamics according to (3.6) the interactions are calculated
according to the Eikonal equation (3.5) without the addition of noise. This equates to the expected
interaction angle for the specific configuration. The transition of the distribution exhibits an interesting
behaviour where peaks existing at smaller b disappear as b widens and new peaks emerge until the
distribution stabilizes with two distinct peaks. In general, the likelihood of larger interaction angles
increases with b. The shape of the distribution can be divided into three regions. When b is small (b <
1.4 m) the likelihood for the interaction angle is highest for small angles Q , 50� and monotonically
decreasing for larger angles. When b > 1.4 m and b < 1.8 m the distribution widens with a higher
likelihood for large interaction angles up to 180°. For b = 1.7 m, the interaction angle distribution is
rather flat in comparison with three less distinct peaks at 30°, 50° and 100°. As b increases to 1.8 m, a
new peak emerges at around 30° turning the distribution uni-modal. Furthermore, increasing b turns
the distribution bi-modal with a narrow peak around Q ¼ 30� and a wider peak at Q ¼ 90�. This
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structure is stable for large b > 3 m. Interactions at larger angles have a higher potential for conflicts
because the noise term is not as sufficient in solving these conflicts as in the case of smaller angles
where pedestrians follow each other. For high motivation (T = 0.1 s; electronic supplementary material,
figure S4) the behaviour is similar, but the transitions take place at smaller b. The distribution
converges into a bi-modal form, but with a more pronounced peak for smaller angles and a smaller
peak for larger angles.

Another observable measured in the experiments of Adrian et al. [4] and Garcimartin et al. [9] is the
waiting time Tw of the pedestrians as a function of the distance to the door r at time t of the run. In the
experiments of Garcimartín et al. [9], the participants are not restricted by a corridor, i.e. the corridor can
be assumed as infinitely wide. As argued in the study, it is expected that the evacuation time follows a
power law distribution Tw / ra with α = 2 in the case of a wide corridor. The reasoning behind this is that
the evacuation time for a single pedestrian leaving the area should scale linearly with r. In a crowded
evacuation scenario, pedestrians interact with each other. Assuming that the pedestrian motion can be
approximated as a fluid with laminar flow implies that the speed scales with 1/r because of the
continuity condition. Therefore, the evacuation time scales with r2. For single-file motion in a narrow
corridor, the evacuation time should scale linearly as the velocity is independent of the distance to the
door and therefore α = 1.

To test this relation in the simulation, the evacuation time is measured for all runs between 10 s and
20 s. In this time interval, the distance to the exit is measured along a straight line from the point r = 0.
Simultaneously Tw is calculated for every agent. This is done in 0.5 s intervals so that the agents’ position
varies. Figure 8a shows the log–log plot of Tw as function of r. The top four panels show the evacuation
time for all distances. The power-law relation is valid for a distance from r = 0.3 m up to around r = 1.6 m.
Figure 8b shows the exponent α of Tw in respect to the corridor width b for both motivations. For the
smallest b, the exponent is close to one. With low motivation α increases and saturates as expected
around α = 2. The comparison with the experimental data from Adrian et al. [4] shows a close match
to the simulation data only for b = 1.2 m. In the high motivational case, the exponent converges to a
value of about α = 1.7 and shows a closer concordance to the experimental data. The values for b =
5.6 m exhibit a large spread, a phenomenon that is attributed to the different number of participants
of each test (the smaller value was obtained for N = 57 participants while the larger one for N = 75).
Figure 9a shows α for simulations with different numbers of agents for b = 5.6 m and T = 0.1 s. The
number of agents influences α, which goes to α = 2 for N≈ 100. The smaller exponent may stem from
the fact that due to the compact cluster of pedestrians a full semicircle is not present in the region
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analysed, leading to a lower exponent (see electronic supplementary material, figure S2). In general, the
high motivation runs fluctuate stronger than those for low motivation. The deviation of the simulation
from the low motivational empirical data could be a result of the wedge-shaped configuration of the
participants discussed earlier, as this influences the geometry in front of the bottleneck. To verify
these, simulations with different geometries are conducted. Instead of a horizontal line for the lower
walls as illustrated in figure 3b, the wall is continued from the exit with a 45° angle until the
intersection with the vertical wall (figure 9c). The results for different b are depicted in figure 9b. The
simulations were repeated 50 times. The value for α saturates around α = 1.8 and is in closer
concordance with the experimental results.

Figure 10a depicts the N–t diagram and figure 10b the mean of the time gap ΔT between consecutive
agents crossing the y = 0 m line taken over all 500 simulations, excluding the first and last 10 agents of
each run, analogous to [4]. The time gap is proportional to the inverse of the flow ΔT∝ J−1. The
comparison of the results shows that in the model, the agents are less efficient in reaching their target
compared to the experimental data. The mean time gaps increase from small b but plateau quickly at
around b = 1.8 m. This kind of behaviour is not found in the experiments. The faster-is-slower effect
[43] cannot be observed, in both the model and the experiments. This is in agreement with
experiments by Haghani et al. [10] where aggressive pushing was prohibited and also with recent
numerical studies using the social force model [26]. The margin for the data points of different runs is
wider for T = 0.1 s compared to the runs with large T. This is due to the increased occurrence of clogs
in the system, as can be observed in the N–t diagram (figure 10a). In the experimental data, a similar
behaviour can be observed where the initial slope of the curve is larger, but due to clogs the flow can
be inhibited for longer times. More data are needed to make a more conclusive statement, but a
higher probability for larger ΔT is reported in [44]. In the model, the agents can only react to the
presence of other agents in their path, but are not able to communicate their intentions to their
surroundings or anticipate the behaviour of other agents. This could point to the missing of a
cooperation and negotiation mechanism [1] in the model, supported by the increase of ΔT with
increasing b, as conflicts get more prevalent.
5. Discussion and conclusion
This study sheds new light on the question of psychological influences on pedestrian dynamics in
bottleneck flow with varying boundary conditions discussed in previous experimental studies [3,4]. A
model with simple agent interactions can reproduce the empirical results [4] surprisingly well using a
single parameter to model different motivational states. In the simulations, all parameters are static
and homogeneous for a specific run and only the boundary condition b and the motivation, with
effects on the behaviour of the agents modelled by the time gap parameter T, are varied in the initial
conditions. The results for the density in front of the bottleneck, the relationship between time to
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target Tw in respect to the distance r and the formation of lanes in narrow corridors correspond well to
the empirical findings. The simplicity of the interactions in the model demonstrates that, on the one
hand, there is no obvious indication for the relevance of social psychology to explain the increase of
the density with the width of the corridor and the lane formation in narrow corridors. On the other
hand, motivation and social norms may be relevant to describe the changes in the density with
varying motivation levels. In particular, the experimental observation stating that, for very wide
corridors, low and high motivation lead to the same density level (see figure 5a, b = 5, 6 m and ρ≈ 7,
8 m−2) is not explainable by the approach presented here. Summarizing, the results illustrate the
challenge in distinguishing possible effects of social psychology on the crowd behaviour from
behaviour emerging from self-organization through microscopic interactions in a physical sense, even
in rather simple scenarios.
l/rsos
R.Soc.Open

Sci.9:211822
5.1. Material and methods
The code used for the simulations can be found at [45] and the raw data of the pedestrian trajectories are
in a repository [46]. The main focus of this work is on the mean density in front of a bottleneck. Two
different measures for the density are used. To be consistent with [4], the mean density in the
measurement area is measured using the Voronoi method introduced in [47] since it produces smooth
density curves. The Voronoi density is defined using a Voronoi diagram. In the case of a two-
dimensional Euclidean space X, the space is divided into subregions called Voronoi cells. The
positions of the N agents ri, i∈ {1, N} at a given time act as vertices of the Voronoi diagram. A point
in space belongs to the Voronoi cell Ri of agent i if the Euclidean distance d(ri, x) to agent i is minimal
compared to all other agents. Rk is the set

Rk ¼ fx [ Xjdðx, riÞ � dðx, rjÞ 8 j = ig: ð5:1Þ
The mean Voronoi density in an area A is then defined as

r0 ¼
Ð
A pðxÞdx

jAj , ð5:2Þ

where pðxÞ ¼ P
i piðxÞ and pi(x) = 1/A if x∈A and 0 otherwise.

A second approach to calculate the density field over the whole corridor area is used to get detailed
density maps, with more clearly defined boundaries of the agents. In this case, the local density ρ in the
system can be defined as

rðr; XÞ ¼
XN
i¼1

dðri � rÞ, rðrÞ ¼ hrðr; XÞi, ð5:3Þ

where r is the position, X marks a configuration and δ(x) denotes the Dirac delta-function. The mean 〈〉
is taken over the configurations X. Since the resolution in the numerical simulations is finite, the
delta-function is approximated by a Gaussian:

dðxÞ ¼ 1ffiffiffiffi
p

p
a
exp � x2

a2

� �
: ð5:4Þ

Density and flow are measured in the same way as in the experimental set-up described in the previous
section, using the Voronoi density (5.2).
5.2. Estimation of agent diameter
In two dimensions, the maximal packing fraction that can be achieved (by a hexagonal packing) of
identical discs with radius r = l/2 is h ¼ p=

ffiffiffiffiffi
12

p � 0:9069 (figure 11a). This provides an estimate for
the upper bound of the density:

rmax ¼
h

r2p
: ð5:5Þ

Figure 11b illustrates equation (5.5). The maximal experimental density ρ is slightly above 9 m−2

(figure 2). For the simulations, a value of ra = 0.175 m is chosen, which corresponds to a maximal
density of about 9.4 m−2, as this yields good results. The agent size chosen corresponds to a rather
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small shoulder width, since e.g. [48] gives an approximate adult shoulder width of l = 0.46 m. However,
the circle diameter of 0.35m could be seen as a contracted pedestrian.
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