000907586 001__ 907586
000907586 005__ 20230522125348.0
000907586 0247_ $$2doi$$a10.1063/5.0073059
000907586 0247_ $$2ISSN$$a0034-6748
000907586 0247_ $$2ISSN$$a1089-7623
000907586 0247_ $$2ISSN$$a1527-2400
000907586 0247_ $$2Handle$$a2128/31127
000907586 0247_ $$2altmetric$$aaltmetric:121680840
000907586 0247_ $$2WOS$$aWOS:000740816700002
000907586 037__ $$aFZJ-2022-02093
000907586 082__ $$a620
000907586 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0$$eCorresponding author
000907586 245__ $$aNanoscale tip positioning with a multi-tip scanning tunneling microscope using topography images
000907586 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2022
000907586 3367_ $$2DRIVER$$aarticle
000907586 3367_ $$2DataCite$$aOutput Types/Journal article
000907586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652070516_3556
000907586 3367_ $$2BibTeX$$aARTICLE
000907586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907586 3367_ $$00$$2EndNote$$aJournal Article
000907586 520__ $$aMulti-tip scanning tunneling microscopy (STM) is a powerful method to perform charge transport measurements at the nanoscale. With four STM tips positioned on the surface of a sample, four-point resistance measurements can be performed in dedicated geometric configurations. Here, we present an alternative to the most often used scanning electron microscope imaging to infer the corresponding tip positions. After the initial coarse positioning is monitored by an optical microscope, STM scanning itself is used to determine the inter-tip distances. A large STM overview scan serves as a reference map. Recognition of the same topographic features in the reference map and in small scale images with the individual tips allows us to identify the tip positions with an accuracy of about 20 nm for a typical tip spacing of ∼1μm. In order to correct for effects such as the non-linearity of the deflection, creep, and hysteresis of the piezoelectric elements of the STM, a careful calibration has to be performed.
000907586 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907586 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907586 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b1
000907586 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b2
000907586 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b3
000907586 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/5.0073059$$gVol. 93, no. 1, p. 013702 -$$n1$$p013702 -$$tReview of scientific instruments$$v93$$x0034-6748$$y2022
000907586 8564_ $$uhttps://juser.fz-juelich.de/record/907586/files/5.0073059.pdf$$yPublished on 2022-01-07. Available in OpenAccess from 2023-01-07.
000907586 909CO $$ooai:juser.fz-juelich.de:907586$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
000907586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b1$$kFZJ
000907586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b2$$kFZJ
000907586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
000907586 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907586 9141_ $$y2022
000907586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907586 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907586 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907586 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-08$$wger
000907586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2021$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-08
000907586 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-08
000907586 920__ $$lyes
000907586 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000907586 980__ $$ajournal
000907586 980__ $$aVDB
000907586 980__ $$aUNRESTRICTED
000907586 980__ $$aI:(DE-Juel1)PGI-3-20110106
000907586 9801_ $$aFullTexts