000907587 001__ 907587
000907587 005__ 20230522125349.0
000907587 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.094001
000907587 0247_ $$2ISSN$$a2475-9953
000907587 0247_ $$2ISSN$$a2476-0455
000907587 0247_ $$2Handle$$a2128/31130
000907587 0247_ $$2WOS$$aWOS:000705548700001
000907587 037__ $$aFZJ-2022-02094
000907587 082__ $$a530
000907587 1001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b0
000907587 245__ $$aGrowth, domain structure, and atomic adsorption sites of hBN on the Ni(111) surface
000907587 260__ $$aCollege Park, MD$$bAPS$$c2021
000907587 3367_ $$2DRIVER$$aarticle
000907587 3367_ $$2DataCite$$aOutput Types/Journal article
000907587 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652073097_4713
000907587 3367_ $$2BibTeX$$aARTICLE
000907587 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907587 3367_ $$00$$2EndNote$$aJournal Article
000907587 520__ $$aOne of the most important functionalities of the atomically thin insulator hexagonal boron nitride (hBN) is its ability to chemically and electronically decouple functional materials from highly reactive surfaces. It is therefore of utmost importance to uncover its structural properties on surfaces on an atomic and mesoscopic length scale. In this paper, we quantify the relative coverages of structurally different domains of a hBN layer on the Ni(111) surface using low-energy electron microscopy and the normal incidence x-ray standing wave technique. We find that hBN nucleates on defect sites of the Ni(111) surface and predominantly grows in two epitaxial domains that are rotated by 60∘ with respect to each other. The two domains reveal identical adsorption heights, indicating a similar chemical interaction strength with the Ni(111) surface. The different azimuthal orientations of these domains originate from different adsorption sites of N and B. We demonstrate that the majority (≈70%) of hBN domains exhibit a (N,B)=(top,fcc) adsorption site configuration while the minority (≈30%) show a (N,B)=(top,hcp) configuration. Our study hence underlines the crucial role of the atomic adsorption configuration in the mesoscopic domain structures of in situ fabricated two-dimensional materials on highly reactive surface
000907587 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907587 588__ $$aDataset connected to DataCite
000907587 7001_ $$0P:(DE-HGF)0$$aSchott, Christina$$b1
000907587 7001_ $$0P:(DE-HGF)0$$aKnippertz, Johannes$$b2
000907587 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b3
000907587 7001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b4
000907587 7001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b5
000907587 7001_ $$0P:(DE-HGF)0$$aAeschlimann, Martin$$b6
000907587 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b7$$eCorresponding author
000907587 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b8
000907587 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.094001$$gVol. 5, no. 9, p. 094001$$n9$$p094001$$tPhysical review materials$$v5$$x2475-9953$$y2021
000907587 8564_ $$uhttps://juser.fz-juelich.de/record/907587/files/PhysRevMaterials.5.094001.pdf$$yOpenAccess
000907587 909CO $$ooai:juser.fz-juelich.de:907587$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b0$$kFZJ
000907587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b5$$kFZJ
000907587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b7$$kFZJ
000907587 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907587 9141_ $$y2022
000907587 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000907587 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907587 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907587 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907587 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000907587 920__ $$lyes
000907587 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000907587 980__ $$ajournal
000907587 980__ $$aVDB
000907587 980__ $$aUNRESTRICTED
000907587 980__ $$aI:(DE-Juel1)PGI-3-20110106
000907587 9801_ $$aFullTexts