000907588 001__ 907588
000907588 005__ 20230222201808.0
000907588 0247_ $$2doi$$a10.1021/acs.jpcc.2c01514
000907588 0247_ $$2ISSN$$a1932-7447
000907588 0247_ $$2ISSN$$a1932-7455
000907588 0247_ $$2Handle$$a2128/31131
000907588 0247_ $$2altmetric$$aaltmetric:126146240
000907588 0247_ $$2pmid$$a35493697
000907588 0247_ $$2WOS$$aWOS:000793809600038
000907588 037__ $$aFZJ-2022-02095
000907588 082__ $$a530
000907588 1001_ $$0P:(DE-Juel1)176199$$aArefi, Hadi H.$$b0$$ufzj
000907588 245__ $$aDesign Principles for Metastable Standing Molecules
000907588 260__ $$aWashington, DC$$bSoc.$$c2022
000907588 3367_ $$2DRIVER$$aarticle
000907588 3367_ $$2DataCite$$aOutput Types/Journal article
000907588 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677063862_20616
000907588 3367_ $$2BibTeX$$aARTICLE
000907588 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907588 3367_ $$00$$2EndNote$$aJournal Article
000907588 520__ $$aMolecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors. Improving the stability of such molecular configurations is an optimization task involving many degrees of freedom and therefore best tackled by computational nanostructure design. Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error.
000907588 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907588 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907588 7001_ $$0P:(DE-HGF)0$$aCorken, Daniel$$b1
000907588 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b2$$ufzj
000907588 7001_ $$00000-0002-3004-785X$$aMaurer, Reinhard J.$$b3
000907588 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b4$$eCorresponding author
000907588 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.2c01514$$gVol. 126, no. 15, p. 6880 - 6891$$n15$$p6880 - 6891$$tThe journal of physical chemistry / C$$v126$$x1932-7447$$y2022
000907588 8564_ $$uhttps://juser.fz-juelich.de/record/907588/files/Invoice_APC600301709.pdf
000907588 8564_ $$uhttps://juser.fz-juelich.de/record/907588/files/acs.jpcc.2c01514.pdf$$yOpenAccess
000907588 8767_ $$8APC600301709$$92022-03-22$$d2022-03-24$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200178551; USD 3750,-
000907588 909CO $$ooai:juser.fz-juelich.de:907588$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery$$popenCost$$pVDB
000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176199$$aForschungszentrum Jülich$$b0$$kFZJ
000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b2$$kFZJ
000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b4$$kFZJ
000907588 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907588 9141_ $$y2022
000907588 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907588 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907588 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907588 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907588 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000907588 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000907588 920__ $$lyes
000907588 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000907588 980__ $$ajournal
000907588 980__ $$aVDB
000907588 980__ $$aI:(DE-Juel1)PGI-3-20110106
000907588 980__ $$aAPC
000907588 980__ $$aUNRESTRICTED
000907588 9801_ $$aAPC
000907588 9801_ $$aFullTexts