000907588 001__ 907588 000907588 005__ 20230222201808.0 000907588 0247_ $$2doi$$a10.1021/acs.jpcc.2c01514 000907588 0247_ $$2ISSN$$a1932-7447 000907588 0247_ $$2ISSN$$a1932-7455 000907588 0247_ $$2Handle$$a2128/31131 000907588 0247_ $$2altmetric$$aaltmetric:126146240 000907588 0247_ $$2pmid$$a35493697 000907588 0247_ $$2WOS$$aWOS:000793809600038 000907588 037__ $$aFZJ-2022-02095 000907588 082__ $$a530 000907588 1001_ $$0P:(DE-Juel1)176199$$aArefi, Hadi H.$$b0$$ufzj 000907588 245__ $$aDesign Principles for Metastable Standing Molecules 000907588 260__ $$aWashington, DC$$bSoc.$$c2022 000907588 3367_ $$2DRIVER$$aarticle 000907588 3367_ $$2DataCite$$aOutput Types/Journal article 000907588 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677063862_20616 000907588 3367_ $$2BibTeX$$aARTICLE 000907588 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000907588 3367_ $$00$$2EndNote$$aJournal Article 000907588 520__ $$aMolecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors. Improving the stability of such molecular configurations is an optimization task involving many degrees of freedom and therefore best tackled by computational nanostructure design. Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error. 000907588 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000907588 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000907588 7001_ $$0P:(DE-HGF)0$$aCorken, Daniel$$b1 000907588 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b2$$ufzj 000907588 7001_ $$00000-0002-3004-785X$$aMaurer, Reinhard J.$$b3 000907588 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b4$$eCorresponding author 000907588 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.2c01514$$gVol. 126, no. 15, p. 6880 - 6891$$n15$$p6880 - 6891$$tThe journal of physical chemistry / C$$v126$$x1932-7447$$y2022 000907588 8564_ $$uhttps://juser.fz-juelich.de/record/907588/files/Invoice_APC600301709.pdf 000907588 8564_ $$uhttps://juser.fz-juelich.de/record/907588/files/acs.jpcc.2c01514.pdf$$yOpenAccess 000907588 8767_ $$8APC600301709$$92022-03-22$$d2022-03-24$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200178551; USD 3750,- 000907588 909CO $$ooai:juser.fz-juelich.de:907588$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery$$popenCost$$pVDB 000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176199$$aForschungszentrum Jülich$$b0$$kFZJ 000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b2$$kFZJ 000907588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b4$$kFZJ 000907588 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000907588 9141_ $$y2022 000907588 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000907588 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000907588 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000907588 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000907588 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11 000907588 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11 000907588 920__ $$lyes 000907588 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0 000907588 980__ $$ajournal 000907588 980__ $$aVDB 000907588 980__ $$aI:(DE-Juel1)PGI-3-20110106 000907588 980__ $$aAPC 000907588 980__ $$aUNRESTRICTED 000907588 9801_ $$aAPC 000907588 9801_ $$aFullTexts