001     907590
005     20230522125348.0
024 7 _ |a 10.1021/acs.jpcc.2c00081
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/31132
|2 Handle
024 7 _ |a WOS:000776247200034
|2 WOS
037 _ _ |a FZJ-2022-02096
082 _ _ |a 530
100 1 _ |a Sättele, Marie S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677057162_20618
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Windischbacher, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Greulich, Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 4
|e Corresponding author
700 1 _ |a Kirschner, Hans
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ovsyannikov, Ruslan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Giangrisostomi, Erika
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gottwald, Alexander
|0 0000-0003-2810-7419
|b 8
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 10
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 11
|u fzj
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 13
700 1 _ |a Koller, Georg
|0 0000-0001-7741-2394
|b 14
700 1 _ |a Bettinger, Holger F.
|0 0000-0001-5223-662X
|b 15
700 1 _ |a Chassé, Thomas
|0 0000-0001-6442-8944
|b 16
700 1 _ |a Peisert, Heiko
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.2c00081
|g Vol. 126, no. 10, p. 5036 - 5045
|0 PERI:(DE-600)2256522-X
|n 10
|p 5036 - 5045
|t The journal of physical chemistry / C
|v 126
|y 2022
|x 1932-7447
856 4 _ |u https://juser.fz-juelich.de/record/907590/files/acs.jpcc.2c00081.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907590
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2021
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21