000907591 001__ 907591
000907591 005__ 20230123101844.0
000907591 0247_ $$2doi$$a10.1021/acs.jpclett.1c01544
000907591 0247_ $$2Handle$$a2128/31133
000907591 0247_ $$2altmetric$$aaltmetric:108845968
000907591 0247_ $$2pmid$$apmid:34228474
000907591 0247_ $$2WOS$$aWOS:000674852100010
000907591 037__ $$aFZJ-2022-02097
000907591 082__ $$a530
000907591 1001_ $$00000-0002-8513-3392$$aŽonda, Martin$$b0$$eCorresponding author
000907591 245__ $$aResolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems
000907591 260__ $$aWashington, DC$$bACS$$c2021
000907591 3367_ $$2DRIVER$$aarticle
000907591 3367_ $$2DataCite$$aOutput Types/Journal article
000907591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652074863_3556
000907591 3367_ $$2BibTeX$$aARTICLE
000907591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907591 3367_ $$00$$2EndNote$$aJournal Article
000907591 520__ $$aDetermination of the molecular Kondo temperature (TK) poses a challenge in most cases when the experimental temperature cannot be tuned to a sufficient extent. We show how this ambiguity can be resolved if additional control parameters are present, such as magnetic field and mechanical gating. We record the evolution of the differential conductance by lifting an individual molecule from the metal surface with the tip of a scanning tunneling microscope. By fitting the measured conductance spectra with the single impurity Anderson model we are able to demonstrate that the lifting tunes the junction continuously from the strongly correlated Kondo-singlet to the free spin-1/2 ground state. In the crossover regime, where TK is similar to the temperature of experiment, the fitting yields ambiguous estimates of TK varying by an order of magnitude. We show that analysis of the conductance measured in two distinct external magnetic fields can be used to resolve this problem.
000907591 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907591 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907591 7001_ $$0P:(DE-HGF)0$$aStetsovych, Oleksandr$$b1
000907591 7001_ $$00000-0003-4949-4147$$aKorytár, Richard$$b2
000907591 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b3
000907591 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b4$$ufzj
000907591 7001_ $$0P:(DE-Juel1)180226$$aRaccanelli, Andrea$$b5$$ufzj
000907591 7001_ $$aTautz, F. Stefan$$b6
000907591 7001_ $$00000-0002-5645-8542$$aJelínek, Pavel$$b7
000907591 7001_ $$00000-0001-7014-4155$$aNovotný, Tomáš$$b8
000907591 7001_ $$00000-0003-0369-8144$$aŠvec, Martin$$b9
000907591 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.1c01544$$gVol. 12, no. 27, p. 6320 - 6325$$n27$$p6320 - 6325$$tThe journal of physical chemistry letters$$v12$$x1948-7185$$y2021
000907591 8564_ $$uhttps://juser.fz-juelich.de/record/907591/files/acs.jpclett.1c01544.pdf
000907591 8564_ $$uhttps://juser.fz-juelich.de/record/907591/files/1811.00351.pdf$$yOpenAccess
000907591 909CO $$ooai:juser.fz-juelich.de:907591$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b3$$kFZJ
000907591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b4$$kFZJ
000907591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180226$$aForschungszentrum Jülich$$b5$$kFZJ
000907591 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907591 9141_ $$y2022
000907591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907591 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000907591 920__ $$lyes
000907591 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000907591 980__ $$ajournal
000907591 980__ $$aVDB
000907591 980__ $$aUNRESTRICTED
000907591 980__ $$aI:(DE-Juel1)PGI-3-20110106
000907591 9801_ $$aFullTexts