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ABSTRACT

Asmodern massively parallel clusters are getting larger with beefier

compute nodes, traditional parallel eigensolvers, such as direct

solvers, struggle keeping the pace with the hardware evolution and

being able to scale efficiently due to additional layers of communi-

cation and synchronization. This difficulty is especially important

when porting traditional libraries to heterogeneous computing ar-

chitectures equipped with accelerators, such as Graphics Processing

Unit (GPU). Recently, there have been significant scientific contri-

butions to the development of filter-based subspace eigensolver

to compute partial eigenspectrum. The simpler structure of these

type of algorithms makes for them easier to avoid the communica-

tion and synchronization bottlenecks typical of direct solvers. The

Chebyshev Accelerated Subspace Eigensolver (ChASE) is a mod-

ern subspace eigensolver to compute partial extremal eigenpairs

of large-scale Hermitian eigenproblems with the acceleration of

a filter based on Chebyshev polynomials. In this work, we extend

our previous work on ChASE by adding support for distributed hy-

brid CPU-multi-GPU computing architectures. Out tests show that

ChASE achieves very good scaling performance up to 144 nodes

with 526 NVIDIA A100 GPUs in total on dense eigenproblems of

size up to 360k.
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1 INTRODUCTION

Modern scientific and engineering applications (e.g., in the filed of

electronic structure in condensed matter physics [6, 21, 22]) often

require the solution of very large dense eigenproblems distributed

on massive supercomputers. In the last decades, there have been

continuous efforts to develop efficient parallel eigensolver libraries

for large dense matrices targeted at systems with a large number

of compute nodes [9, 11, 19, 31]. Dense eigensolvers, even those

for extremal eigenproblems in which only a fraction at the end

of the spectrum is sought after, have O(𝑛3) complexity. Unlike

simpler linear algebra operations, eigensolvers consist of several

"moving parts", many of which can differ significantly in terms

of computational intensity. Because of these characteristics, it is

often challenging to construct parallel implementations of dense

eigensolvers that scale well on large supercomputers, and ensure

a good balance between different nodes throughout the compu-

tation. When it comes to efficiently porting dense eigensolvers

to distributed GPGPU (General Purpose GPU) systems, this chal-

lenge becomes even harder to address. Currently, only the ELPA

library [11, 44] carried out such an endeavor with moderate success.

To our knowledge, no library is able to successfully exploit GPUs

for very large dense eigenproblems with size larger than 100k.

The lack of balanced scalability on heterogeneous platforms is

an important issue in light of the current trend towards massively

parallel clusters trying to reach exascale. To grasp this target, fu-

ture architectures will have to leverage compute nodes equipped

with beefy multi-core CPUs coupled with powerful multi-GPUs

via a high-bandwidth interconnect (e.g. the NVIDIA Grace project

[29]). Having a dense eigensolver running efficiently on such ar-

chitectures is paramount. In order to develop efficient distributed

multi-GPU eigensolver libraries, the implementations should be

designed with a large amount of concurrency and a minimal data

transfer between host and device memory.

To address this problem, we propose a distributed hybrid CPU-

GPU version of the ChASE eigensolver. ChASE, short for Cheby-

shev Accelerated Subspace iteration Eigensolver, is a modern li-

brary based on subspace iteration accelerated with a Chebyshev

polynomial filter and includes some innovative algorithmic fea-

tures [7, 42]. It is designed to approximate extremal eigenpairs of

dense symmetric and Hermitian matrices and is particularly effec-

tive in solving sequences of correlated eigenproblems (e.g., derived

by the linearization of non-linear problems). An MPI-based parallel

implementation of ChASE for homogeneous systems has already

been presented in [42], and will be referred to as ChASE-CPU. We

have referred to the hybrid CPU-GPU implementation presented

in this paper as ChASE-GPU.
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Due to its algorithm design, ChASE is able to scale well on dis-

tributed multi-GPU clusters. As shown in [42], the algorithm can be

decoupled in a series of basic linear operations, the most important

of which is the Hermitian Matrix-Matrix Multiplications (HEMMs)
repeatedly executed within the Chebyshev polynomial Filter. As

a typical BLAS-3 operation, the performance of an efficient imple-

mentation of the distributed HEMM is able to approach the theoretical
peak performance of a given system. Other linear algebra opera-

tions are computed redundantly on each MPI process, minimizing

the inter-node communication. We provide the hybrid CPU-GPU

implementation of ChASE by designing and implementing a cus-

tomized distributed HEMM that supports flexible configurations of
binding MPI processes and GPUs within the compute node. In addi-

tion, selected computationally intensive linear algebra operations,

such as QR factorization, are also offloaded to one of the GPUs

tied to each MPI process. Because to the relatively small memory

capacity of the device, we provide accurate formulas for estimating

the memory cost for CPU and GPU to help the user choose the

optimal resource usage for a given problem. ChASE-GPU has been

tested on our in-house supercomputer JURECA Data Centric

Module (JURECA-DC). The strong scaling tests were performed

with a symmetric matrix of size 130k with double-precision using

up to 64 compute nodes and with a total of 256 NVIDIA A100 GPUs.

Similarly, the weak scaling test was performed using up to 144

compute nodes with a total of 576 GPUs, using symmetric matrices

ranging in size from 30k to 360k. We have also performed a strong

scaling test up to 64 compute nodes comparing ChASE-GPU with

ELPA2 with GPU support. This last test was carried out on an Her-

mitian eigenproblem of size 76k generated by the discretization of

the Bethe-Salpeter equation used to simulate the opto-electronic

properties of In2O3.

Original contributions.We have significantly improved the per-

formance of the existing custom-HEMM, which is mainly tailored

to the execution of the 3-terms recurrence relation at the base of the

polynomial Filter. Although ChASE-CPU already supported GPUs,

it could only use a single GPU per MPI rank. We increased the

flexibility of the custom-HEMM by extending support for multiple

GPUs per MPI rank. We achieved this result by adding a further

custom distribution of the data to allow the execution of multi-GPU

HEMM operations local to each MPI rank. We also optimized the

design of the filter by removing redundancies in the code and reduc-

ing the memory footprint of the algorithm. As a result we gained an

increased scalability of the polynomial Filter in terms of the number

of CPUs and GPUs, and ensured that much larger eigenproblems

can be solved efficiently with the same amount of resources by

making well-balanced use of all available computational units.

Organization. In Section 2, we give a short overview of existing

dense symmetric and Hermitian eigensolvers targeting distributed

memory architectures followed by a description of the ChASE

algorithm and its detailed implementation on distributed multi-

GPUs, along with formulas for the memory requirements of CPU

and GPU. We present the numerical and parallel performance of

ChASE-GPU in Section 4 and a comparison with currently available

eigensolvers executing on distributed GPUs. Section 5 summarizes

the achievements and concludes the paper.

2 DISTRIBUTED EIGENSOLVERS

In this paper, we look for a partial diagonalization of nev eigenpairs
of a standard symmetric eigenvalue problem

𝐴𝑉 = 𝑉Λ, (1)

in which 𝐴 is a 𝑛 × 𝑛 real symmetric or complex Hermitian

matrix. 𝑉 is a 𝑛 × nev rectangular matrix, and Λ is a nev × nev
diagonal matrix, which contain the desired nev eigenvectors and
eigenvalues, respectively. While the matrix 𝐴 can be sparse, dense

or banded, this paper focuses only on dense matrices. Depending

on the number of eigenpairs to be computed, eigenproblems can be

solved either by direct solvers or iterative solvers. Direct solvers are
generally used when many if not all eigenpairs are needed. Iterative

methods are more effective when nev is a small fraction of 𝑛. Di-

rect solver generally consists of three phases: (1) reducing original

matrix to a condensed form (usually tridiagonal form, but other

banded forms [12, 19] also exist) by orthogonal transformation;

(2) solving eigendecomposition of this condensed form through

QR algorithm [34], divide-and-conquer method [36], MRRR algo-

rithm [10], etc; and (3) backtransforming to obtain the eigenvectors

of the original matrix, if required. On the other hand, iterative meth-

ods project the eigenproblem onto a small continuously improved

searching space. Then, an approximated basis for desired eigenvec-

tors can be constructed within this small searching space to extract

desired eigenpairs. Convergence of iterative methods highly de-

pends on the spectrum of 𝐴, therefore filtering (e.g., polynomial or

rational filters) and preconditioning techniques have been proposed

[3, 18, 30, 33, 35], which are able to separate the desired eigenpairs

in a specific range from the rest.

Numerous libraries providing the distributed-memory eigen-

solvers, especially the direct solvers, have been available for the last

decades, since the first release of the ScaLAPACK [9] library. ScaLA-

PACK extends the ubiquitous LAPACK [1] re-implementing its rou-

tines by dividing the matrices into blocks and distributing them into

2D block-cyclic fashion. Although ScaLAPACK brings a good level

of scalability and performance on distributed CPU-only systems, it

cannot exploit modern heterogeneous systems based on accelera-

tors. In recent years, additional cutting-edge direct solver libraries

have been introduced, such as ELPA [11, 25] and EigenEXA [13].

These new libraries employ a similar 2D block-cyclic scheme, with

further optimizations for node-level and distributed-memory level

operations and communications, and achieve better performance

than ScaLAPACK. Despite being out of maintenance since 2016,

the Elemental [31] library implements distributed direct solvers

with a cyclic-cyclic data distribution and a parallel direct solver

based on the MRRR algorithm [8]. Among the iterative libraries,

the most well-known solvers for dense symmetric problem are

FEAST [30], and its distributed-memory variant PFEAST [20]. As a

typical subspace method, PFEAST projects eigenproblems onto a

set of subspaces constructed by rational filters.

To our knowledge, though numerous solvers for dense eigen-

problems have been developed for distributed-memory systems,

only a few of them can exploit distributed hybrid systems equipped

with GPUs. Recently, significant work has been conducted on ex-

tending distributed-memory eigensolvers to support GPU acceler-

ation [16, 27]. The most recent version of ELPA2 [44] introduces
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eigensolvers capable of exploiting distributed heterogeneous sys-

tems equipped with GPUs. Considered to be the future replacement

for ScaLAPACK, SLATE [14] is a cutting-edge library providing

dense linear algebra routines supporting large-scale distributed-

nodes with accelerators. Currently, SLATE supports only the com-

putation of eigenvalues and lacks the backtransformation function-

ality required to compute the eigenvectors of the original matrix.

In [41], authors implemented a Shift-Invert Spectrum Slicing sub-

space eigensolver based on GPU-accelerated dense linear algebra

kernels in SLATE. There are other GPU-specialized libraries, such

as cuSOLVER (single GPU) [28], cuSOLVER-MG (multi-GPUs) [28],

and MAGMA (hybrid CPUs and multi-GPUs) [37], which provide

GPU-accelerated direct solvers. However, they are all tailored for

shared-memory systems only, and therefore the eigenproblem size

they can tackle is limited by the size of the device memory on the

compute node.

With this paper we present a distributed hybrid CPU-GPU im-

plementation of ChASE and propose it as an alternative for solving

large symmetric (Hermitian) eigenproblems that go beyond the

state of the art. With the acceleration of the Chebyshev polynomial

filter, ChASE makes it extremely efficient to approximate partial

extremal eigenpairs (< 10%). ChASE is highly scalable, because

most of its work is concentrated in Matrix-Matrix multiply. With

these BLAS-3 HEMM kernels, ChASE capitalizes on their extreme

effectiveness to achieve a high efficiency both on each GPU card of

compute node and in a distributed-memory architecture.

3 DISTRIBUTED MULTI-GPU CHASE

3.1 ChASE Algorithm

ChASE is a numerical library written in C++ with templates and

based on the subspace iteration algorithm. Subspace iteration is

one of the first iterative algorithms used as numerical eigensolver

for Symmetric/Hermitian matrices [5]. Its more sophisticate cousin,

complemented with a Chebyshev polynomial filter, was developed

quite early on as a numerical code by Rutishauser [32]. In early

2000s, a version was developed to solve electronic structure eigen-

problems within the PARSEC code [46, 47].

Last ten years have seen a revival of this algorithm in the context

of applicationsmostly focused on realizations of electronic structure

codes [4, 7, 23]. The ChASE library evolved from one of these efforts

and became a full fledged numerical eigensolver which can be used

outside the specific electronic structure domain [42]. ChASE’s algo-

rithm takes inspiration by the work of Rutishauser [32] and Zhou

et al. [47], and includes some additional features: 1) it introduces

an internal loop that iterates over the polynomial filter and the

Rayleigh quotient, 2) it uses a sophisticated mechanism to estimate

the spectral bounds of the search subspace using a Density of States

(DoS) method [24], 3) it adds a deflation and locking mechanism to

the internal loop, and 4) most importantly, it optimizes the degree of

the polynomial filter so as to minimize the number of matrix-vector

operations required to reach convergence of desired eigenpairs.

Full details of ChASE structure and its algorithm can be found

in [42], here we give a high level description of its main parts

(see Algorithm 1) ChASE first estimates the necessary spectral

bounds by executing a small number of repeated Lanczos steps

(Line 2). It then filters a number of (random) vectors using an

Algorithm 1 ChASE algorithm

Require: Symmetric matrix 𝐴, number of desired eigenpairs

nev, threshold tolerance for residuals 𝑡𝑜𝑙 , initial polyno-

mial degree 𝑑𝑒𝑔, search space increment 𝑛𝑒𝑥 , vector 𝑉 ≡
[𝑣1, · · · , 𝑣nev+nex].

Ensure: nev extreme eigenpairs (Λ, 𝑌 ), with Λ = [𝜆1, · · · , 𝜆nev]
and 𝑌 ≡ [𝑦1, · · · , 𝑦nev].

1: 𝑚1:nev+nex ← 𝑑𝑒𝑔

2: (𝑏𝑠𝑢𝑝 , 𝜇1, 𝜇nev+nex,𝑉 ) ← Lanczos(𝐴)
3: while size(𝑌 <nev) do
4: 𝑉 ← Filter(𝐴,𝑏𝑠𝑢𝑝 , 𝜇1, 𝜇nev+nex,𝑉 ,𝑚)

5: 𝑄 ← QR([𝑌 𝑉 ])
6: (𝑉 , Λ̃) ← Rayleigh-Ritz(𝐴,𝑄)
7: Compute the residual 𝑅𝑒𝑠 (𝑉 , Λ̃)
8: (𝑉 ,Λ, 𝑌 ) ← Deflation & Locking(𝑉 ,Λ̃, 𝑅𝑒𝑠 (𝑉 , Λ̃),𝑌 )
9: 𝜇1 ← min( [Λ Λ̂]), 𝜇nev+nex ← max( [Λ Λ̂])
10: 𝑐 ← 𝑏𝑠𝑢𝑝+𝜇nev+nex

2 , 𝑒 ← 𝑏𝑠𝑢𝑝−𝜇nev+nex
2

11: for 𝑎 ∈ [1, · · · , 𝑠𝑖𝑧𝑒 (𝑉 )] do
12: 𝑚𝑎 ← Degrees(𝑡𝑜𝑙, 𝑅𝑒𝑠 (𝑉:,𝑎, 𝜆𝑎), 𝜆𝑎, 𝑐, 𝑒)
13: end for

14: Sort 𝑅𝑒𝑠 (𝑉 , Λ̃), 𝑉 , Λ̃,𝑚 according to𝑚

15: end while

optimized degree for each vector (Line 4). The filtered vectors are

orthonormalized using QR factorization (Line 5). The 𝑄 factor is

used to reduce the eigenproblem to the size of the subspace yet to

be diagonalized using a Rayleigh-Ritz projection (Line 6). The

resulting “small” eigenproblem is solved using a standard dense

solver (e.g. Divide&Conquer). Residuals are then computed and

eigenpairs below the tolerance threshold are deflated and locked

(Line 7). Finally, a new set of filtering degrees are computed for the

non-converged vectors and the procedure is repeated (Line 12).

3.2 Distributed Implementation of ChASE

The implementation of ChASE relies on a number of numerical

kernels which can be further decoupled as simple dense linear

algebra operations to exploit optimized BLAS and LAPACK libraries

(e.g., MKL [40], OpenBLAS [43], BLIS [39], libFLAME [38]). Such

decoupling makes easy for ChASE to take advantage of low-level

kernels. In [42], the authors introduce a distributed implementation

of ChASE in which most operations such as QR factorization and

the eigendecomposition within the Rayleigh-Ritz section have

been implemented with vendor-optimized threaded BLAS/LAPACK.

The only exception is the Hermitian matrix-matrix multiplication

(HEMM), which occupies a significant part of computations within

ChASE. This HEMM is implemented with a custom MPI scheme, and

is used in the Filter, Rayleigh-Ritz, and Residual parts of the
ChASE Algorithm whenever the matrix 𝐴 is right-multiplied by a

rectangular matrix 𝑉 .

In our customized distributed HEMM, MPI processes are organized

in a 2D grid whose shape is as square as possible. Matrix𝐴 is divided

into sub-blocks, each of which is assigned onto one MPI process

following the 2D block distribution. Within each row communica-

tor, the rectangular matrix 𝑉 is distributed in a 1D block fashion.

This distribution results in a large and contiguous matrix-matrix
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multiplication on each node, often resulting in a performance close

to its theoretical peak. The equation below gives an example which

assigns a 𝑛 × 𝑛 matrix 𝐴 onto a 3 × 2MPI grid. MPI processes are

numbered using column-major order.

𝐴𝑑𝑖𝑠𝑡 =
©­«
𝐴0,0 𝐴0,1

𝐴1,0 𝐴1,1

𝐴2,0 𝐴2,1

ª®¬, 𝑉𝑑𝑖𝑠𝑡 =
©­­«
𝑉0 𝑉1

𝑉0 𝑉1

𝑉0 𝑉1

ª®®¬ (2)

In this example, matrix 𝐴 is split in a series of sub-matrices 𝐴𝑖, 𝑗

with 𝑖 ∈ [0, 2] and 𝑗 ∈ [0, 1]. 𝐴0,0 is assigned to MPI rank 0, 𝐴1,0

is distributed to rank 1, and so on. The rectangular matrix 𝑉 is

split horizontally into 2 sub-blocks 𝑉0 and 𝑉1, which satisfy the

relation 𝑉𝑇 = [𝑉𝑇
0 | 𝑉

𝑇
1 ]. The distribution of 𝑉 within each row

communicator is also shown in Equation 2, in which𝑉0 is assigned

to the first column communicator—the MPI processes numbering 0,

1, and 2—and 𝑉1 is assigned to the second column communicator.

In the Chebyshev Filter the matrix-matrix multiplications ap-

pears as a three-terms recurrence relation:

𝑉𝑖+1 = 𝛼𝑖 (𝐴 − 𝛾𝑖 𝐼𝑛)𝑉𝑖 + 𝛽𝑖𝑉𝑖−1, 𝑖 ∈ [1,𝑚), (3)

where 𝑉 is a (subset of) rectangular matrix, 𝑚 is the degree of

Chebyshev polynomial, and 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are scalar parameters related

to each iteration. As it is described, the HEMM requires to re-distribute

𝑉 from the iteration 𝑖 to 𝑖 + 1. Therefore, the matrix-matrix multi-

plication can be rewritten into two separate forms for iterations 𝑖

and 𝑖 + 1 as follows:

�̂� = 𝐴𝑉, (4a)

𝑉 = 𝐴�̂� . (4b)

Here 𝐴 = 𝐴 − 𝛾𝐼𝑛 and 𝑉 are of same distribution schemes as in

Equation 2, and �̂� = 𝐴𝑉 is a rectangular matrix with the same

size and shape of 𝑉 , but a 1D distribution scheme along the col-

umn communicator of the 2D grid. An example of �̂� analogous to

Equation 2 is given below:

�̂�𝑑𝑖𝑠𝑡 =
©­­«
�̂�0 �̂�0

�̂�1 �̂�1

�̂�2 �̂�2

ª®®¬ , (5)

The 𝑛 × 𝑛𝑒 rectangular matrix �̂� is split horizontally into 3 sub-

blocks�̂�0,�̂�1 and�̂�2, which satisfy the relation�̂�
𝑇 = [�̂�𝑇

0 |�̂�
𝑇
1 |�̂�

𝑇
2 ].

For each iterative step in Equation 3, it is necessary to either re-

distribute𝑉 to �̂� or vice versa. As such, the communication cost of

these frequent re-distributions would clearly hamper the parallel

performance of ChASE.

The scheme introduced in [42] avoids this re-distribution be-

tween Equation 4a and 4b by right-multiplying the rectangular

matrix on 𝐴𝑇 , the transpose of 𝐴. This is possible since 𝐴 is sym-

metric/Hermitian. Rectangular matrices are re-assembled on each

MPI node via a broadcast operation within each column or row

communicator after a full execution of a Chebyshev Filter, since
other operations on these rectangular matrices are performed re-

dundantly on eachMPI node. For more details of this scheme, please

refer to the paper [42].

3.3 Multi-GPU Acceleration of ChASE

The ChASE-CPU algorithm [42] allows easy offloading of the com-

putational kernels to CPU or GPU using architecture-specific li-

braries. Currently, ChASE supports a single GPU per MPI rank per

compute node, and only general matrix-matrix multiplication is

offloaded to the GPU through a standard call to the CUDA HEMM

kernel. Since ChASE cannot exploit the full potential of distributed

multi-GPU platforms, we have extended the current implementa-

tion with a customised multi-GPU HEMM.

3.3.1 Distributed Multi-GPUs HEMM. Parallelizing HEMM across

multiple GPUs is done at two levels: 1) across MPI ranks and 2)

across the available GPUs per MPI rank. The former is implemented

in the same way as in ChASE- CPU (subsection 3.2) by dividing the

matrix A into blocks𝐴𝑝,𝑞 and distributing them over a 2D MPI grid

(Eq. 2, left). At the MPI rank level, a dedicated block 𝐴𝑝,𝑞 is further

divided into several sub-blocks corresponding to the number of

GPUs organized in the 2D grid. Fig. 1a shows the subdivision of

block 𝐴𝑝,𝑞 (blue) and the rectangular matrices 𝑉 ,�̂� (green) on

the GPU devices. The sub-blocks of 𝐴𝑝,𝑞 are transmitted to the

local GPUs only once and remain in GPU memory until ChASE

completes. Since the entire input matrix 𝐴 is kept in the GPUs, the

space required to store 𝐴 should fit in the aggregate memory of all

available GPUs (see subsection 3.4). The rectangular matrices𝑉 and

�̂� are split as in Eq. 2 (right) and Eq. 5, respectively, and distributed

among the GPUs according to the type of operation performed, as

shown in Fig. 1. The matrix-matrix product is executed on the GPUs

in a block fashion. The communication between the GPUs is only

at the node level (not via MPI) and along the rows of the 2D GPU

grid. Upon completion, the resulting rectangular matrix �̂� (Fig.1a)

is located in the first column communicator (e.g. GPUs 0 and 3 in

Fig.1a). The final step is to redistribute the obtained blocks of �̂�

across each row communicator, since the first block of𝑊 needs to

be distributed across GPUs 0, 1, and 2 for the next iteration (see

Fig. 1b). To reduce the unnecessary memory transfers and memory

redistribution per MPI rank and between iterations of the Filter,
the right-multiply is performed with 𝐴𝑇𝑝,𝑞 , Fig. 1b.

Before performing the HEMM, the matrix𝐴 is shifted as𝐴 = 𝐴−𝛾𝐼𝑛
from the iteration 𝑖 to 𝑖+1 (see Section 3.2).We implemented specific

CUDA kernels to efficiently carry out a new 𝛾 shift of the matrix on

each sub-blocks of 𝐴 for each GPU. This ensures these sub-blocks

reside always on the device memory of the GPUs without any data

movement during the whole life-cycle of ChASE-GPU.

3.3.2 Offloading Selected Routines to GPUs. In ChASE-CPU, all

dense linear algebra operations other than HEMM have been imple-

mented redundantly on each MPI process using threaded BLAS

and LAPACK. For ChASE-GPU, the most computationally intensive

operations have been offloaded to GPUs using NVIDIA shared-

memory libraries cuBLAS and cuSOLVER. The API of cuBLAS and

cuSOLVER is almost identical to that of BLAS and LAPACK, hence

offloading them is a straightforward process.

Because the communication between CPUs and GPUs should

be minimized and the device memory of a single GPU is limited,

only the most compute-intensive operations have been offloaded

to GPUs. First we offload the QR factorization using the cuSOLVER

routine cusolverDnXgeqrf. Other selected operations are in the
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Figure 1: An example of the Multi-GPU HEMM on 6 GPUs

per MPI rank. Matrices/blocks stored in CPU (red) and GPU

(green and blue) memory. The numbers denote the GPUs in

which a block is stored.

Rayleigh-Ritz procedure. In ChASE, the original eigenproblem

is projected onto a "search" subspace, from which approximate

solutions are computed. The active subspace is obtained by form-

ing a nev × nev Rayleigh-Ritz quotient 𝐺 = 𝑄𝑇𝐴𝑄 , where 𝑄 is

the 𝑛 × nev orthonormal matrix outputted by the QR factorization.

In ChASE, the right-multiplication of 𝑄 with 𝐴 is implemented

by utilizing the available distributed multi-GPUs HEMM. The left-

multiplying 𝑄𝑇
on 𝐴𝑄 is offloaded to GPUs using the cuBLAS

cublasXgemm routine. Then𝐺 is diagonalized as 𝐺 = �̂� Λ̂�̂� −1 us-

ing a LAPACK eigensolver such as Divide&Conquer, with (�̂� , Λ̂)
being the approximate eigenpairs of 𝐺 . The diagonalization of 𝐺

is not performed on GPUs even if it would probably end up in a

faster performance thanks to less data movement between CPU and

GPU. This design choice is deliberate and is based on the trade-off

between the large memory requirement of the diagonalization and

its relative small speedup over vendor-optimized LAPACK. The

eigenvectors of the original problem are obtained by a backtrans-

form operation 𝑄�̂� , which is also offloaded to GPUs using the

cublasXgemm routine.

Calling a cuBLAS or cuSOLVER routine requires allocating de-

vice memory for the input/output arrays and external workspace.

This allocation is performed before the main work of ChASE by

pre-computing the required buffer size, which is then reused when-

ever is possible, and deallocated only after the main work ends.

This implementation avoids frequent allocation and deallocation of

device memory in the loop between Line 3 and 15 (Algorithm 1),

which is important to reduce the CPU-GPU synchronizations. The

data movement between host and device memory is limited since

it takes place only once for each iteration within the main loop of

ChASE. In future work we plan to explore GPU-aware MPI for the

direct communications between GPUs.

3.4 Estimating Memory Requirement

An important aspect of running ChASE is its memory footprint.

The memory cost per task and per GPU device should not exceed

the amount of main and device memory available. For this reason,

we provide explicit formulas for estimating the memory cost of

CPUs and GPUs in ChASE-GPU. The same formulas are encoded

in a Python script (provided with the code) that the user can run to

determine an appropriate resource allocation for a given problem.

The main memory requirement per MPI rank is given as follows

𝑀𝑐𝑝𝑢 = 𝑝𝑞 + (𝑝 + 𝑞)𝑛𝑒 + 2𝑛𝑒𝑛, (6)

where 𝑛 is the rank of the matrix 𝐴 defining the eigenproblem,

𝑛𝑒 = nev + nex is the largest dimension of the active subspace to

be projected onto. The dimension of the 2D MPI grid is defined as

𝑟 × 𝑐 , and the dimension of the local matrix held by each MPI rank

is 𝑝 × 𝑞, where 𝑝 = 𝑛
𝑟 and 𝑞 = 𝑛

𝑐 . Because of their dependence on 𝑟

and 𝑐 , the first two terms of Equation 6 scale with the increase in

computational resources, while the last term does not, since it refers

to a part of the code that is redundantly executed. The non-scalable

part is negligible if 𝑛𝑒 is a small percentage of 𝑛.

A similar expression holds for the memory requirement per GPU

𝑀𝑔𝑝𝑢 =
𝑝𝑞

𝑟𝑔𝑐𝑔
+ 3max( 𝑝

𝑟𝑔
,
𝑞

𝑐𝑔
)𝑛𝑒 + (2𝑛 + 𝑛𝑒 )𝑛𝑒 , (7)

In ChASE-GPU, multiple GPUs of a single compute node can bind

to an MPI process as a 𝑟𝑔 × 𝑐𝑔 2D grid scheme. The first two terms

of Equation 7 also scale with resource allocation. As for the CPU

formula, the last term, which is O(𝑛𝑒𝑛), mainly refers to the mem-

ory requirements of cublasXgemm and cusolverDnXgeqrf, which
are offloaded to GPUs and do not scale with the increase in MPI

tasks. Since the capacity of device memory is limited compared to

the main memory, this last term sets a maximum size for matrix 𝐴

and the number of eigenpairs that can be computed. In future work,

we plan to remove these constraints by implementing versions of

the related dense linear algebra operations distributed on a local

subset of computing nodes.

When comparing ChASEmemory footprint with the typical sym-

metric eigensolver in ScaLAPACK (e.g. PDSYEVX based on parallel

bisection and inverse iteration), we notice a similar leading order

behavior. PDSYEVX requires O( 𝑛2

𝑟𝑐 ≡ 𝑝𝑞) memory per processor (i.e.

MPI rank) [2]. However, depending on the spectrum (e.g. tightly

clustered eigenvalues), the algorithm solving the tridiagonal form

may require O(𝑛2) memory per processor to guarantee the cor-

rectness of the computed eigenpairs. So we conclude that, while

in the general the ChASE CPU memory requirement is slightly

larger than ScaLAPACK solvers and has a non-scalable portion that

depends on the global dimension of A (𝑛), this portion is not leading

order. Moreover, because this portion is related to the redundant QR

factorization, future development in distributing such factorization

will significantly decrease its impact to the overall ChASE memory

footprint.

4 NUMERICAL EXPERIMENTS

ChASE has been tested on JURECA-DC supercomputer at Jülich

Supercomputing Centre. Each node is equipped with two 64 cores

AMD EPYC 7742 CPUs @ 2.25 GHz (16 × 32 GB DDR4 Memory)
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Table 1: Spectral information for generating test matrices.

In this table, we have 𝑘 = 1, · · · , 𝑛.

Matrix Name Spectral Distribution

Uniform (Uni) 𝜆𝑘 = 𝑑𝑚𝑎𝑥 (𝜖 + (𝑘−1) (1−𝜖)𝑛−1 )
Geometric (Geo) 𝜆𝑘 = 𝑑𝑚𝑎𝑥𝜖

𝑛−𝑘
𝑛−1

(1-2-1) (1-2-1) 𝜆𝑘 = 2 − 2 cos( 𝜋𝑘𝑛+1 )

Wilkinson (Wilk)

All positive, but one, roughly in

pairs.

and four NVIDIA Tesla A100 GPUs (4 × 40 GB high-bandwidth

memory). ChASE is compiled with GCC 9.3.0, OpenMPI 4.1.0 (UCX

1.9.0), CUDA 11.0 and Intel MKL 2020.4.304. All computations in

this section are performed in double-precision.

4.1 Test matrix suite

For benchmarking ChASE, we use artificial matrices whose eigen-

pairs are known analytically and random matrices generated with

given spectral properties. The framework for the matrix generation

is inspired by the testing infrastructure for symmetric tridiagonal

eigensolvers of LAPACK [26]. In this work, double precision artifi-

cial matrices are generated with four different spectral distributions.

The first two generated matrices have analytical eigenvalues and

are named (1-2-1) andWilkinson. (1-2-1) is a tridiagonal matrix

with entries on the main diagonal and first two subdiagonals equal

to 2 and 1, respectively. TheWilkinson matrix is another tridiago-

nal matrix whose entries on the first subdiagonals are all 1, while
the main diagonal have values (𝑚,𝑚−1,𝑚−2, · · · , 2, 1, 2, · · · ,𝑚−
2,𝑚 − 1,𝑚), in which𝑚 = 𝑛−1

2 with 𝑛 the size of matrix.

The next two generated matrices, Uniform and Geometric, are

dense, symmetric with a given spectral distribution. In order to

generate them we construct a diagonal matrix 𝐷 whose diagonal is

filled exactly by the prescribed eigenvalues. Then a dense matrix

𝐴 with the given spectra is generated as 𝐴 = 𝑄𝑇𝐷𝑄 , with 𝑄 an

orthogonal matrix, and 𝑄𝑇
its transpose. The orthogonal matrix 𝑄

is the Q factor of a QR factorization on a 𝑛×𝑛 matrix whose entries

are randomly generated with respect to the Gaussian distribution.

All the matrices used in our tests are generated using our matrix

generator
1
which allow the creation of matrices of any desired size

for both shared-memory and distributed-memory architectures.

The spectral properties of four types of artificial matrices are

given in Table 1 and are explained below:

• Uniformmatrix: its eigenvalues are distributed equallywithin

[min(𝑑𝑚𝑎𝑥𝜖, 0),max(𝑑𝑚𝑎𝑥𝜖, 0)] following a discrete uni-

form distribution.

• Geometric matrix: its spectrum follows a geometric distri-

bution. If 𝑑𝑚𝑎𝑥 > 0 and 𝜖 ∈ (0, 1), then its eigenvalues are

in the range (0, 𝑑𝑚𝑎𝑥𝜖], and smaller eigenvalues are quite

more clustered than the larger ones.

• (1-2-1) matrix [15, 17] has analytically known eigenvalues.

The clustering of its eigenvalues is not very strong, although

1
https://github.com/SimLabQuantumMaterials/DEMAGIS

clustering becomes tighter with the increase of dimension

[26].

• ForWilkinson matrix, all eigenvalues, but one, are positive.

The positive eigenvalues are roughly in pairs, and the larger

pairs are closer together.

Because of their distinct spectral proprieties, these 4 types of ma-

trices should provide a qualitative picture of the behavior of the

ChASE library resulting in widely different numerical responses

and performance measurements.
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(b) Comparison of time-to-solution of ChASE.

Figure 2: Evaluation of three MPI and GPU binding configu-

rations: 1, 2 and 4MPI rankwith 32 threads each and 4 GPUs

in total. Data are obtained as the averages of 20 repetitions.

4.2 Evaluation of MPI and GPU Binding

Configurations

As shown in Section 3.3, ChASE-GPU supports a flexible binding

policy ofMPI ranks andGPUs. In order to find the best configuration

on the targeting platform JURECA-DC, we initially performed a

weak scaling test with three binding policies of MPI ranks and GPUs

within node: (1) 1 MPI rank bounded with 4 GPUs (1MPI×4GPUs),
(2) 2 MPI ranks with 2 GPUs bounded to each (2MPI×2GPUs), (3)
4 MPI ranks with 1 GPU bounded to each (4MPI×1GPUs). The
number of threads per rank is fixed to 32 so as to eliminate the

huge NUMA-effects of some BLAS and LAPACK routines.
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Table 2: Comparison of ChASE-CPU and ChASE-GPU with artificial matrices. The size of test matrices are 20k × 20k, and nev
and nex are 1500 and 500, respectively. Statistics for each test are obtained over 20 runs.

(a) ChASE-CPU on one node of JURECA-DC: MPI process number is 16, and OpenMP thread number per rank is 8.

Matrix Iter. Matvecs

Runtime (seconds)

All Lanczos Filter QR RR Resid

1-2-1 13 466614 272.28 ± 5.28 4.64 ± 0.19 176.46 ± 4.60 31.69 ± 1.27 37.45 ± 1.64 20.99 ± 0.67
Geo 8 285192 165.39 ± 1.86 4.76 ± 0.28 108.02 ± 1.75 19.19 ± 0.59 20.64 ± 1.22 12.14 ± 0.54
Uni 5 163562 101.27 ± 1.98 4.76 ± 0.24 62.17 ± 1.47 12.05 ± 0.53 13.91 ± 0.98 7.97 ± 0.60
Wilk 9 248946 155.44 ± 2.64 4.86 ± 0.96 95.68 ± 1.77 21.53 ± 0.88 20.62 ± 1.25 12.09 ± 0.47

(b) ChASE-GPU on one node of JURECA-DC: MPI process number is 4, OpenMP thread and GPU number per process is 32 and 1.

Matrix Iter. Matvecs

Runtime (seconds)

All Lanczos Filter QR RR Resid

1-2-1 13 466614 31.39 ± 0.09 0.58 ± 0.01 14.38 ± 0.02 2.59 ± 0.01 8.41 ± 0.09 5.24 ± 0.04
Geo 8 285192 18.57 ± 0.05 0.58 ± 0.01 8.76 ± 0.02 1.58 ± 0.01 4.58 ± 0.04 2.96 ± 0.02
Uni 5 163562 11.79 ± 0.03 0.58 ± 0.01 5.06 ± 0.00 1.00 ± 0.00 3.11 ± 0.04 1.96 ± 0.02
Wilk 8 246924 17.22 ± 0.05 0.57 ± 0.00 7.63 ± 0.02 1.59 ± 0.00 4.45 ± 0.04 2.90 ± 0.02

For the weak scaling experiment, the numbers of compute nodes

are 𝑝2, with 𝑝 ∈ 1, 2, · · · , 12 to produce 2D square node grids. The

generated test matrices are of type Uniform with sizes being 3 ×
104𝑝 . The number of desired eigenpairs nev and external searching
space increment nex are 2250 and 750, respectively.

In this section, for all three configurations, we report both the

performance of the Filter and the time-to-solution of ChASE-

GPU. The Filter, whose major part is the HEMM, is reported as

the absolute performance extracted from the GPUs with tensor

core activated. Because the FP64 Tensor Core is used automatically

and selectively by cuBLAS 11.0.0 we report absolute performance

and not fraction of peak. The performance of the Filter directly
reflects the performance of the multi-GPU HEMM, which is one

of the original contributions of this paper. In the case of weak

scaling, both the number of computing units and the problem size

increase, which results in a constant workload per units. However,

for an iterative eigensolver, it is impossible to predict exactly the

total workload to reach convergence, even if the problems are

constructed with matrices sharing the same spectral distribution.

Instead of solving problems to achieve full convergence, each test

of weak scaling has been executed with only one subspace iteration,

which can ensure a constant workload of Matvecs
2
per computing

unit.

Fig. 2a shows that the performance of the Filter decreases

rapidly for all three configurations as the number of compute nodes

increases, stabilising when the number of compute nodes is greater

than 16. The reason for the performance drop is that communi-

cation (collective routine MPI_Allreduce) and memory copies

between CPU and GPU are included in the total execution time of

the Filter. In [45] (see Supplementary Materials, Table S7), the au-

thors showed that the latency inMPI_Allreduce remains constant

on more than 16 nodes, as does the impact of MPI communication

2
It indicates the total number of matrix-vector multiplications executed by HEMMwithin
the Filter.

on Filter performance. This is clearly observed in the 1MPIx4GPU

configuration when the number of nodes is increased from 1 to 4,

as no MPI communication was required on one node (only 1 MPI

rank is used). At each step in the Filter, a rectangular block of

vectors 𝑉 is split (see Eq. 2) and distributed to the GPUs of the

same node and copied back to the host memory after the matrix

multiplication is completed. These two operations (and 𝑁 = 120𝑘)
consume 30% of the total time of the distributed HEMM. In addition,

some extra time ( 19%) is spent on inter-GPU communication at the

node level, so up to 50% of the HEMM time is spent on the memory

copy. The memory copies cannot be efficiently overlapped with

matrix-matrix multiplication because there is a strong dependency

between them. Currently, this multi-GPU HEMM lacks support for
faster communication links between GPUs within the node, such

as. NVLink, and is part of future work.

Fig. 2b shows that the time-to-solution for ChASE with all three

configurations increases somewhat linearly as a function of the

number of compute nodes used. The performance of the entire

ChASE is different from the performance of the Filter in Fig. 2a.

ChASE with configuration 1MPI×4GPUs always outperforms the

other two, with 2MPI×2GPUs in between. Since QR and RR are

computed redundantly on each MPI rank and operate on the full

column size, the gain of the configuration with 1MPI×4GPUs over
the other configurations comes from a lower communication over-

head using expensive MPI_Ibcast (see [45], Supplement Materials,

Table S7). Unlike MPI_Allreduce, the latency of the broadcasting

routines increases steadily with the number of MPI ranks.

The outcome of its higher efficiency due to the decreased MPI

communication makes up the relative lower performance of its

corresponding Filter. Because 1MPI×4GPUs is the best configu-
ration of ChASE-GPU on JURECA-DC, we will use it as the default

configuration for the remaining tests. Additional weak scaling tests

are discussed in Section 4.4.2.
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4.3 Eigen-type tests

In order to confirm the numerical robustness of ChASE-GPU, we

compare it with ChASE-CPU using the test matrix suite described in

Section 4.1. The size of the test matrices is fixed as 20k, and nev and
nex are respectively 1500 and 500, which means the maximum size

of active subspace is 10% of the full space of problems. The ℓ2-norm

condition numbers of generated (1-2-1), Geometric, Uniform and

Wilkinsonmatrices are respectively 1.6×108, 1.0×104, 1.0×104
and 4.7 × 104.

The experiments of both ChASE-CPU and ChASE-GPU are per-

formed on one single compute node with a different combination

of MPI ranks and OpenMP threads for each of the two versions of

ChASE. For ChASE-CPU, the number of MPI ranks and OpenMP

threads per node is fixed at 16 and 8, respectively. This is the best
combination ofMPI andOpenMP on JURECA-DC, andwas obtained

from a series of sweet-spot tests spanning all possible combina-

tions. For ChASE-GPU, the configuration is 1MPI×4GPUs, and the

number of OpenMP threads per MPI rank is 32, which has been

proved as the best one.

The results are shown in Table 2, which includes the subspace it-

eration number until convergence, the required number of Matvecs

operations, and the runtime for ChASE and its main parts. For all

four types of eigenproblems, both ChASE-CPU and ChASE-GPU

are able to achieve the convergence in a limited number of itera-

tions with the (1-2-1) problem, which has a much larger condition

number, taking the most time and iterations, more than doubling

the runtime and iterations of the Uniform problem. The acceler-

ation provided by ChASE-GPU is practically independent from

the type of eigenproblem. For all four test matrices, ChASE-GPU

achieves a speedup of approximately 8.9× for the entire runtime

and 12.7× for just the Filter, which is the most computationally

intensive part of the solver. The considerations above demonstrate

the viability of ChASE as a general purpose solver for extremal

symmetric eigenproblems. Because they converge faster than the

others, we will generate only eigenproblems of the Uniform type

for the scalability tests.

A closer look reveals that the exact number of iterations between

ChASE-CPU and ChASE-GPU differs for the matrix Wilkinson.

This difference is also reflected in the numbers of Matvecs. This may

seem an harmless difference, but it is rather suspicious in light of the

deterministic convergence provided by the Chebyshev filter [42].

Upon further investigation, we identified the cause of this behavior

in a very peculiar numerical instability of cusolverXgeqrf, the
QR factorization of cuSOLVER, which seems to happen randomly.

The numerical difference of QR factorization between the one in

cuSOLVER and LAPACK is minor, just above the machine preci-

sion. However, this difference propagates through the computation,

which finally results in a slightly different numerical accuracy. We

further observed that for much larger matrices than 20k such nu-

merical instability can sometimes damage the redundant computa-

tions of the QR factorization and introduce a mismatch in the data

exchanged between different rows of MPI communicators. Even-

tually this behavior results in the breakdown of ChASE-GPU. We

have signalled the bug to the NVIDIA developers of cuSOLVER.
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(b) Strong scaling performance of ChASE-GPU.

Figure 3: Strong scaling tests with Uniform matrix (𝑛 =

130, 000, nev= 1000, and nex= 300). Data are obtained as the

averages of 15 repetitions.

4.4 Scalability

This section analyze ChASE-GPU’s behavior in strong and weak

scalability regime by comparing with ChASE-CPU. For all the tests,

the numbers of MPI ranks and OpenMP threads per rank of ChASE-

CPU are respectively 16 and 8. For ChASE-GPU, the number of

MPI ranks per node is 1, with 4 GPUs and 32 threads assigned to

each rank.

4.4.1 Strong scaling. Fig. 3 illustrates the results of the strong

scaling experiment of ChASE-CPU and GPU using a Uniform

matrix of size 𝑛 = 130, 000. We fix nev and nex respectively as

1000 and 300 (= 1%n). The counts of compute nodes are selected

to be square numbers 1, 4, 9, · · · , 64. Fig. 3 reports the runtime of

ChASE-CPU and ChASE-GPU as a vertical stacked bar plot, which

includes also the fractions of runtime of numerical functions, such

as Filter, Lanczos, QR, RR and Resid. The speedup of ChASE-

GPU is plotted in Fig. 4, where for each point on the x-axis, the

speedup is calculated with respect to the corresponding timing of

ChASE-CPU.

Both ChASE-CPU and ChASE-GPU can achieve good strong scal-

ing performance for smaller number of nodes. However, with larger

number of compute nodes, the decrease of total runtime of ChASE

become progressively negligible, especially for ChASE-GPU. The
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tions.

Filter, whose most important operation is the customized HEMM,
achieves very good strong scaling performance in both ChASE-

CPU and ChASE-GPU. Compared with the tests using 1 compute

node, ChASE-CPU with 64 compute nodes achieves 32× speedup

for Filter, 29× speedup for Lanczos, and 5× speedup for Resid.
Analogously, ChASE-GPU achieves 10.8× speedup for Filter, 5×
speedup for Lanczos, but only 1.4× speedup for Resid. For ChASE-
CPU, the most dominant linear algebra operation in the Filter,
Lanczos and Resid is HEMM. In these three functions in ChASE-

GPU, only HEMM has been offloaded to GPUs, which achieves a

notable acceleration over the CPU version. Compared to HEMM, the
remaining BLAS/LAPACK operations called within the Lanczos
and Resid become much more dominant, which turn them into

new bottlenecks. This is also the reason why the strong scaling

performance of ChASE-GPU tends to be worse than ChASE-CPU,

even with the acceleration of GPUs. This is clearly visible from

Fig. 4, which shows the speedup of ChASE-GPU over ChASE-CPU

as a function of compute nodes count. ChASE-GPU with 1 compute

node has the maximal speedup over ChASE-CPU, which is 19.16.
Increasing the count of compute node, the speedup keeps getting

smaller and tends to flatten towards a value ∼ 8.61.

4.4.2 Weak scaling. Weak scaling experiments are particularly

important to domain scientists, who are interested in simulating

system of increasingly larger size. In order to maintain a fixed

workload, we keep the same setup described in Section 4.2. The

test matrices are of type Uniform, with size increment of 30k
(30k, 60k, 90k, · · · , 360k). The counts of compute nodes selected as

square numbers 1, 4, 9, · · · , 144, and nev and nex are respectively
fixed as 2250 and 750. Fig. 5 plots the results of weak scaling ex-

periments as a vertical stacked bar plot, which shows the runtime

of ChASE-CPU and ChASE-GPU, including the runtime of their

numerical functions. Additionally, Fig. 6 reports the parallel effi-

ciency of the numerical functions Filter and Resid of this weak
scaling experiment.

The good news is that, independently of which version, ChASE

scale linearly. The bad news is that the total runtime of ChASE-CPU

and ChASE-GPU doubles every-time the matrix size quadruples
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(b) Weak scaling performance of ChASE-GPU.

Figure 5:Weak scaling tests withUniformmatrix (𝑛 ranging

from 30k to 360k, nev= 2250, nex= 750). Data are obtained as

the averages of 15 repetitions.
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Figure 6: Weak scaling: Parallel efficiency of Filter and

Resid. Error bars are obtained with 15 repetitions.

and triples, respectively. When we look at the details of the distri-

bution of runtime over the different functions, we observe a good

weak scaling of the Filter thanks to the custom parallelization of

HEMM for both CPU and GPU. However, a small increase in Filter
runtime is observed when the number of nodes is increased, e.g. to
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Figure 7: Strong scaling: Time-to-solution and speedup of

ChASE-GPU over ELPA2 for solving 76k In2O3 Hermitian

eigenproblem with nev=800. Data are obtained as the aver-

ages of 15 repetitions.

1, 4 and 16 nodes (Fig. 5b) the runtime is 3.27 sec, 5.01 sec and 6.3

sec, respectively. The main reason for this is an increased amount of

communication (MPI_Allreduce). The percentage of MPI on 4 and

16 nodes is 35% and 49% of the total Filter execution time, respec-

tively. However, considering only the distributed HEMM performance

(without MPI communication) on 16 nodes with 64 GPUs, we reach

685.44 TFlops ( 55% of the peak GPU performance). The increased

communication is expected because Allreduce is called at the end of

the distributed HEMM which is computed multiple times within the

Filter and could be repeated up to 20 times (the maximum degree

of the polynomial) in the first iteration of ChASE.

The weak scaling of Lanczos and Resid are quite worse than

the Filter, even if they make use of the distributed HEMM. With

the increase of problem size, QR and RR, which are computed re-

dundantly on the node, become progressively dominant, especially

the QR factorization. For ChASE-CPU with 144 compute nodes, QR
and RR take 48% and 29% of the whole runtime, meanwhile Filter
take only 16%. In ChASE-GPU, the QR factorization and the GEMM
routine, called internally by RR, have been offloaded to a single

GPU using the cuSOLVER and the cuBLAS libraries. Such a choice

makes these two functions less impactful than the corresponding

one in ChASE-CPU.

Fig. 6 shows the parallel efficiency of Filter and Resid of both

ChASE-CPU and ChASE-GPU. For 144 compute nodes, the Filter
in ChASE-CPU and ChASE-GPU shows a parallel efficiency of 63%
and 42%, respectively. On the other hand, the parallel efficiency

of Resid in ChASE-CPU and ChASE-GPU attains 7% and 12%,
respectively. Overall, our results confirms the efficiency of our

implementation of distributedmulti-GPU HEMM and provide a strong
indication of what should be the focus of further developments of

the ChASE library.

4.5 Comparison with other libraries

As we stated in Section 2, there are no other distributed GPU eigen-

solvers apart from ELPA2. Therefore, we perform a strong scaling

test up to 64 compute nodes comparing ChASE-GPU with ELPA2

with GPU support (ELPA2-GPU). The comparison of ChASE-CPU

with other libraries are not carried out in this paper, since the com-

parison with ScaLAPACK, Elemental and FEAST are available in

[42]. The version of ELPA for the benchmarks is 2020.11.001, which

is the most updated installation on JURECA-DC. The selected in-

stallation is compiled with GCC 10.3.0, OpenMPI 4.1.1, Intel MKL

2021.2.0 and CUDA 11.3 with CUDA architecture 𝑠𝑚_80. We prefer

to use ELPA compiled with OpenMPI rather than the one compiled

with ParaStationMPI, since the former enable ELPA to be 10% faster

than the latter. The Multi-Process Service (MPS) is activated for

ELPA. The MPI core and GPU numbers per node is set respectively

as 32 and 4. This configuration has been selected based on a sweet-

spot test with multiple configurations. The 2D grid of MPI ranks

is setup as closest to be square. The block size of the block-cyclic

distribution of matrix in ELPA is fixed at 16.
The eigenproblem that we use for this test is Hermitian with a

matrix size 76k, and is generated by the discretization of the Bethe-

Salpeter equation used to simulate the opto-electornic properties of

In2O3. The number of eigenpairs sought after, nev, is set at 800 for

both ChASE-GPU and ELPA2-GPU. For ChASE-GPU, the size of the

external searching space nex is fixed as 200. The time-to-solution

and speedup of ChASE-GPU over ELPA2-GPU is reported in Fig. 7.

We first point out that ELPA2-GPU runs out of device mem-

ory when only 1 compute node is used, while ChASE-GPU solves

successfully the problem in 104 seconds. The strong scaling perfor-

mance of ChASE-GPU is also better than the one of ELPA2-GPU,

especially with a relative small number of compute nodes. For in-

stance, ChASE-GPU shows a 1.88× speedup when the compute

node number increases from 4 to 16, meanwhile ELPA2-GPU dis-

plays only 1.54× speedup. In average, ChASE-GPU achieves 2.6×
speedup over ELPA2 when the compute node number ranges from

4 to 16. The maximal speedup 2.97× has been achieved when 25
compute nodes are used.

We point out that the performance gain of ChASE-GPU over

ELPA2-GPU has been obtained when only a relatively small portion

of extremal eigenpairs are sought after, which is the range of via-

bility of the ChASE library. In this case, ChASE-GPU can achieve

large speedup over ELPA2-GPU with an inferior memory footprint.

5 CONCLUSION

In this paper, we presented a distributed CPU-GPU implementation

of the ChASE eigensolver for large-scale symmetric eigenproblems.

ChASE targets extremal dense eigenproblems when a relatively

small fraction (≤ 10%) of extremal eigenpairs is sought after. We in-

troduce the implementation of a customized distributed CPU-GPU

HEMM for ChASE which is used in many of its functions, notably the

Chebyshev filter. Because the Filter function is the most computa-

tionally heavy part of the library, this custom-HEMM implementa-

tion has a dramatic impact on the parallel performance of the library

when is ported on distributed multi-GPUs architectures. We have

benchmarked the numerical and parallel performance of the new

distributed hybrid CPU-GPU implementation on one of the most

modern platforms featuring AMD Epyc Rome CPUs coupled with

4 powerful NVIDIA A100. Our tests show a good parallel perfor-

mance of the custom HEMM implementation impacting positively the

overall performance of the library. Because of the excellent scaling

of the Filter using the new HEMM, other functions in the library
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have become the new bottleneck which we plan to addressed in the

near future. The overall target, is to further develop ChASE into an

eigensolver that can be deployed and used on current PETAscale

supercomputing clusters to solve for very large eigenproblems.
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