000907606 001__ 907606
000907606 005__ 20240705080646.0
000907606 0247_ $$2doi$$a10.3389/fnetp.2022.826345
000907606 0247_ $$2Handle$$a2128/31135
000907606 0247_ $$2altmetric$$aaltmetric:123040678
000907606 0247_ $$2pmid$$a36926112
000907606 0247_ $$2WOS$$aWOS:001203807400001
000907606 037__ $$aFZJ-2022-02105
000907606 082__ $$a610
000907606 1001_ $$0P:(DE-Juel1)179447$$avan der Vlag, Michiel$$b0$$eCorresponding author$$ufzj
000907606 245__ $$aRateML: A Code Generation Tool for Brain Network Models
000907606 260__ $$aLausanne$$bFrontiers Media$$c2022
000907606 3367_ $$2DRIVER$$aarticle
000907606 3367_ $$2DataCite$$aOutput Types/Journal article
000907606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719988035_28440
000907606 3367_ $$2BibTeX$$aARTICLE
000907606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907606 3367_ $$00$$2EndNote$$aJournal Article
000907606 520__ $$aWhole brain network models are now an established tool in scientific and clinical research, however their use in a larger workflow still adds significant informatics complexity. We propose a tool, RateML, that enables users to generate such models from a succinct declarative description, in which the mathematics of the model are described without specifying how their simulation should be implemented. RateML builds on NeuroML’s Low Entropy Model Specification (LEMS), an XML based language for specifying models of dynamical systems, allowing descriptions of neural mass and discretized neural field models, as implemented by the Virtual Brain (TVB) simulator: the end user describes their model’s mathematics once and generates and runs code for different languages, targeting both CPUs for fast single simulations and GPUs for parallel ensemble simulations. High performance parallel simulations are crucial for tuning many parameters of a model to empirical data such as functional magnetic resonance imaging (fMRI), with reasonable execution times on small or modest hardware resources. Specifically, while RateML can generate Python model code, it enables generation of Compute Unified Device Architecture C++ code for NVIDIA GPUs. When a CUDA implementation of a model is generated, a tailored model driver class is produced, enabling the user to tweak the driver by hand and perform the parameter sweep. The model and driver can be executed on any compute capable NVIDIA GPU with a high degree of parallelization, either locally or in a compute cluster environment. The results reported in this manuscript show that with the CUDA code generated by RateML, it is possible to explore thousands of parameter combinations with a single Graphics Processing Unit for different models, substantially reducing parameter exploration times and resource usage for the brain network models, in turn accelerating the research workflow itself. This provides a new tool to create efficient and broader parameter fitting workflows, support studies on larger cohorts, and derive more robust and statistically relevant conclusions about brain dynamics.
000907606 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907606 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
000907606 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x2
000907606 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000907606 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000907606 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x5
000907606 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907606 7001_ $$0P:(DE-HGF)0$$aWoodman, Marmaduke$$b1
000907606 7001_ $$0P:(DE-HGF)0$$aFousek, Jan$$b2
000907606 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b3$$ufzj
000907606 7001_ $$0P:(DE-Juel1)184896$$aPérez Martín, Aarón$$b4$$ufzj
000907606 7001_ $$0P:(DE-HGF)0$$aJirsa , Viktor$$b5
000907606 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b6$$ufzj
000907606 773__ $$0PERI:(DE-600)3106353-6$$a10.3389/fnetp.2022.826345$$gVol. 2, p. 826345$$p826345$$tFrontiers in network physiology$$v2$$x2674-0109$$y2022
000907606 8564_ $$uhttps://juser.fz-juelich.de/record/907606/files/van%20der%20Vlag%20et%20al.%20-%202022%20-%20%20RateML%3A%20A%20Code%20Generation%20Tool%20for%20Brain%20Network%20Models.pdf$$yOpenAccess
000907606 8767_ $$d2022-01-25$$eAPC$$jDeposit$$lDeposit: Frontiers$$z1615 USD
000907606 909CO $$ooai:juser.fz-juelich.de:907606$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179447$$aForschungszentrum Jülich$$b0$$kFZJ
000907606 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b1$$kAMU
000907606 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b2$$kAMU
000907606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b3$$kFZJ
000907606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184896$$aForschungszentrum Jülich$$b4$$kFZJ
000907606 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b5$$kAMU
000907606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b6$$kFZJ
000907606 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907606 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000907606 9141_ $$y2022
000907606 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907606 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907606 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907606 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907606 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000907606 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-16T14:29:25Z
000907606 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-16T14:29:25Z
000907606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-12-16T14:29:25Z
000907606 920__ $$lyes
000907606 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000907606 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000907606 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x2
000907606 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x3
000907606 980__ $$ajournal
000907606 980__ $$aVDB
000907606 980__ $$aI:(DE-Juel1)JSC-20090406
000907606 980__ $$aI:(DE-Juel1)INM-6-20090406
000907606 980__ $$aI:(DE-Juel1)IAS-6-20130828
000907606 980__ $$aI:(DE-Juel1)INM-10-20170113
000907606 980__ $$aAPC
000907606 980__ $$aUNRESTRICTED
000907606 9801_ $$aAPC
000907606 9801_ $$aFullTexts
000907606 981__ $$aI:(DE-Juel1)IAS-6-20130828