000907623 001__ 907623
000907623 005__ 20230224084239.0
000907623 0247_ $$2doi$$a10.1016/j.susc.2022.122080
000907623 0247_ $$2ISSN$$a0039-6028
000907623 0247_ $$2ISSN$$a1879-2758
000907623 0247_ $$2Handle$$a2128/32660
000907623 0247_ $$2WOS$$aWOS:000912772700001
000907623 037__ $$aFZJ-2022-02112
000907623 082__ $$a530
000907623 1001_ $$0P:(DE-HGF)0$$aHerrmann, Christoph$$b0
000907623 245__ $$aRotational epitaxy of h-BN on Cu (110)
000907623 260__ $$aAmsterdam$$bElsevier$$c2022
000907623 3367_ $$2DRIVER$$aarticle
000907623 3367_ $$2DataCite$$aOutput Types/Journal article
000907623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668697722_20010
000907623 3367_ $$2BibTeX$$aARTICLE
000907623 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907623 3367_ $$00$$2EndNote$$aJournal Article
000907623 520__ $$aThe growth of wafer-scale, single-crystalline hexagonal boron nitride (h-BN) monolayers on catalytic metallic substrates, requires a sparse nucleation density. At high temperatures ( C), preparation of vicinal Cu (110) with annealing is reported to provide preferential nucleation of single antiphase domains of h-BN with facets parallel to Cu steps. We have used in situ low-energy electron microscopy (LEEM) to image nucleation and growth of h-BN islands on a Cu (110) single crystal at lower temperatures (650–750)C. With annealing, diffraction (LEED) and dark field imaging (LEEM) confirmed the formation of three sets of h-BN antiphase domains. Two sets are epitaxially aligned with four Cu in-plane directions, the lowest lattice mismatch available. While alignment is excellent in one direction, the other trigonal directions are 10.4 rotationally mismatched. A third pair of antiphase domains nucleates aligned with in-plane directions. These domains are midway, rotated 5.2 with respect to either type of domain, and have the lowest interfacial energy. Localized defects were found to correlate with every island nucleation event.
000907623 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907623 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907623 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b1$$ufzj
000907623 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b2$$eCorresponding author
000907623 7001_ $$00000-0002-3059-7528$$aKavanagh, Karen L.$$b3
000907623 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2022.122080$$gVol. 721, p. 122080 -$$p122080 -$$tSurface science$$v721$$x0039-6028$$y2022
000907623 8564_ $$uhttps://juser.fz-juelich.de/record/907623/files/1-s2.0-S0039602822000656-main.pdf$$yRestricted
000907623 8564_ $$uhttps://juser.fz-juelich.de/record/907623/files/C_Herrmann_etal__Rotational_epitaxy_of_hBN_on_Cu110__SurfSci_721_122080_%282022%29__final_submitted_version_March14_2022.pdf$$yPublished on 2022-03-27. Available in OpenAccess from 2024-03-27.
000907623 909CO $$ooai:juser.fz-juelich.de:907623$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b1$$kFZJ
000907623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b2$$kFZJ
000907623 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907623 9141_ $$y2022
000907623 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907623 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907623 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907623 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907623 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000907623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF SCI : 2021$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000907623 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907623 920__ $$lyes
000907623 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000907623 980__ $$ajournal
000907623 980__ $$aVDB
000907623 980__ $$aUNRESTRICTED
000907623 980__ $$aI:(DE-Juel1)PGI-3-20110106
000907623 9801_ $$aFullTexts