000907623 001__ 907623 000907623 005__ 20230224084239.0 000907623 0247_ $$2doi$$a10.1016/j.susc.2022.122080 000907623 0247_ $$2ISSN$$a0039-6028 000907623 0247_ $$2ISSN$$a1879-2758 000907623 0247_ $$2Handle$$a2128/32660 000907623 0247_ $$2WOS$$aWOS:000912772700001 000907623 037__ $$aFZJ-2022-02112 000907623 082__ $$a530 000907623 1001_ $$0P:(DE-HGF)0$$aHerrmann, Christoph$$b0 000907623 245__ $$aRotational epitaxy of h-BN on Cu (110) 000907623 260__ $$aAmsterdam$$bElsevier$$c2022 000907623 3367_ $$2DRIVER$$aarticle 000907623 3367_ $$2DataCite$$aOutput Types/Journal article 000907623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668697722_20010 000907623 3367_ $$2BibTeX$$aARTICLE 000907623 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000907623 3367_ $$00$$2EndNote$$aJournal Article 000907623 520__ $$aThe growth of wafer-scale, single-crystalline hexagonal boron nitride (h-BN) monolayers on catalytic metallic substrates, requires a sparse nucleation density. At high temperatures ( C), preparation of vicinal Cu (110) with annealing is reported to provide preferential nucleation of single antiphase domains of h-BN with facets parallel to Cu steps. We have used in situ low-energy electron microscopy (LEEM) to image nucleation and growth of h-BN islands on a Cu (110) single crystal at lower temperatures (650–750)C. With annealing, diffraction (LEED) and dark field imaging (LEEM) confirmed the formation of three sets of h-BN antiphase domains. Two sets are epitaxially aligned with four Cu in-plane directions, the lowest lattice mismatch available. While alignment is excellent in one direction, the other trigonal directions are 10.4 rotationally mismatched. A third pair of antiphase domains nucleates aligned with in-plane directions. These domains are midway, rotated 5.2 with respect to either type of domain, and have the lowest interfacial energy. Localized defects were found to correlate with every island nucleation event. 000907623 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000907623 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000907623 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b1$$ufzj 000907623 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b2$$eCorresponding author 000907623 7001_ $$00000-0002-3059-7528$$aKavanagh, Karen L.$$b3 000907623 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2022.122080$$gVol. 721, p. 122080 -$$p122080 -$$tSurface science$$v721$$x0039-6028$$y2022 000907623 8564_ $$uhttps://juser.fz-juelich.de/record/907623/files/1-s2.0-S0039602822000656-main.pdf$$yRestricted 000907623 8564_ $$uhttps://juser.fz-juelich.de/record/907623/files/C_Herrmann_etal__Rotational_epitaxy_of_hBN_on_Cu110__SurfSci_721_122080_%282022%29__final_submitted_version_March14_2022.pdf$$yPublished on 2022-03-27. Available in OpenAccess from 2024-03-27. 000907623 909CO $$ooai:juser.fz-juelich.de:907623$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000907623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b1$$kFZJ 000907623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b2$$kFZJ 000907623 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000907623 9141_ $$y2022 000907623 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000907623 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000907623 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000907623 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000907623 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger 000907623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF SCI : 2021$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11 000907623 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11 000907623 920__ $$lyes 000907623 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0 000907623 980__ $$ajournal 000907623 980__ $$aVDB 000907623 980__ $$aUNRESTRICTED 000907623 980__ $$aI:(DE-Juel1)PGI-3-20110106 000907623 9801_ $$aFullTexts