001     907623
005     20230224084239.0
024 7 _ |a 10.1016/j.susc.2022.122080
|2 doi
024 7 _ |a 0039-6028
|2 ISSN
024 7 _ |a 1879-2758
|2 ISSN
024 7 _ |a 2128/32660
|2 Handle
024 7 _ |a WOS:000912772700001
|2 WOS
037 _ _ |a FZJ-2022-02112
082 _ _ |a 530
100 1 _ |a Herrmann, Christoph
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rotational epitaxy of h-BN on Cu (110)
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668697722_20010
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The growth of wafer-scale, single-crystalline hexagonal boron nitride (h-BN) monolayers on catalytic metallic substrates, requires a sparse nucleation density. At high temperatures ( C), preparation of vicinal Cu (110) with annealing is reported to provide preferential nucleation of single antiphase domains of h-BN with facets parallel to Cu steps. We have used in situ low-energy electron microscopy (LEEM) to image nucleation and growth of h-BN islands on a Cu (110) single crystal at lower temperatures (650–750)C. With annealing, diffraction (LEED) and dark field imaging (LEEM) confirmed the formation of three sets of h-BN antiphase domains. Two sets are epitaxially aligned with four Cu in-plane directions, the lowest lattice mismatch available. While alignment is excellent in one direction, the other trigonal directions are 10.4 rotationally mismatched. A third pair of antiphase domains nucleates aligned with in-plane directions. These domains are midway, rotated 5.2 with respect to either type of domain, and have the lowest interfacial energy. Localized defects were found to correlate with every island nucleation event.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Raths, Miriam
|0 P:(DE-Juel1)172607
|b 1
|u fzj
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 2
|e Corresponding author
700 1 _ |a Kavanagh, Karen L.
|0 0000-0002-3059-7528
|b 3
773 _ _ |a 10.1016/j.susc.2022.122080
|g Vol. 721, p. 122080 -
|0 PERI:(DE-600)1479030-0
|p 122080 -
|t Surface science
|v 721
|y 2022
|x 0039-6028
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/907623/files/1-s2.0-S0039602822000656-main.pdf
856 4 _ |y Published on 2022-03-27. Available in OpenAccess from 2024-03-27.
|u https://juser.fz-juelich.de/record/907623/files/C_Herrmann_etal__Rotational_epitaxy_of_hBN_on_Cu110__SurfSci_721_122080_%282022%29__final_submitted_version_March14_2022.pdf
909 C O |o oai:juser.fz-juelich.de:907623
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF SCI : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21