001     907665
005     20240709082146.0
024 7 _ |a 10.1016/j.jpowsour.2022.231528
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/31153
|2 Handle
024 7 _ |a altmetric:128102379
|2 altmetric
024 7 _ |a WOS:000798957800003
|2 WOS
037 _ _ |a FZJ-2022-02142
082 _ _ |a 620
100 1 _ |a Chiou, Min-Huei
|0 P:(DE-Juel1)176524
|b 0
|u fzj
245 _ _ |a Durable fast-charging lithium metal batteries designed with cross-linked polymer electrolytes and niobate-coated cathode
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652337771_27401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A durable lithium metal polymer battery with extended cycle-life is designed by exploiting cross-linked poly(trimethylene carbonate) (PTMC) electrolytes and LiNi0.6Mn0.2Co0.2O2 (NMC622) with well-defined protectivecoating (0.5 wt% of LiNbO3 on the surface layer, <5 nm thickness). The presented materials demonstratefeasibility of faster cycling at rates of 1C and 2C at temperatures of 40 and 60 ◦C, exhibiting prominent capacityretention of 91% and 80% SOH (state of health) after 500 cycles. At higher cross-linking densities, the introducedquasi-solid polymer electrolytes afford good cycling performance and sufficient suppression of high surface arealithium depositions as well as improved ability of solvent entrapment, hence reflecting a considerable stepforward towards achieving all solid-state polymer-based cells.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Borzutzki, Kristina
|0 P:(DE-Juel1)171270
|b 1
|u fzj
700 1 _ |a Thienenkamp, Johannes Helmut
|0 P:(DE-Juel1)179050
|b 2
|u fzj
700 1 _ |a Mohrhardt, Marvin
|0 P:(DE-Juel1)187471
|b 3
|u fzj
700 1 _ |a Liu, Kun Ling
|0 P:(DE-Juel1)178047
|b 4
|u fzj
700 1 _ |a Mereacre, Valeriu
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Binder, Joachim R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ehrenberg, Helmut
|0 0000-0002-5134-7130
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2022.231528
|g Vol. 538, p. 231528 -
|0 PERI:(DE-600)1491915-1
|p 231528 -
|t Journal of power sources
|v 538
|y 2022
|x 0378-7753
856 4 _ |y Published on 2022-05-10. Available in OpenAccess from 2024-05-10.
|u https://juser.fz-juelich.de/record/907665/files/Manuscript-POWER-D-21-05911-R2%281%29.pdf
856 4 _ |y Published on 2022-05-10. Available in OpenAccess from 2024-05-10.
|u https://juser.fz-juelich.de/record/907665/files/Manuscript-POWER-D-21-05911-R2_Brunklaus.pdf
909 C O |o oai:juser.fz-juelich.de:907665
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176524
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21