000907667 001__ 907667
000907667 005__ 20240712113052.0
000907667 0247_ $$2doi$$a10.1002/aenm.202200401
000907667 0247_ $$2ISSN$$a1614-6832
000907667 0247_ $$2ISSN$$a1614-6840
000907667 0247_ $$2Handle$$a2128/31441
000907667 0247_ $$2altmetric$$aaltmetric:127843679
000907667 0247_ $$2WOS$$aWOS:000791450500001
000907667 037__ $$aFZJ-2022-02144
000907667 082__ $$a050
000907667 1001_ $$0P:(DE-Juel1)173731$$aHou, Xu$$b0
000907667 245__ $$a“Water‐in‐Eutectogel” Electrolytes for Quasi‐Solid‐State Aqueous Lithium‐Ion Batteries
000907667 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907667 3367_ $$2DRIVER$$aarticle
000907667 3367_ $$2DataCite$$aOutput Types/Journal article
000907667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657111137_12977
000907667 3367_ $$2BibTeX$$aARTICLE
000907667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907667 3367_ $$00$$2EndNote$$aJournal Article
000907667 520__ $$aThe development of high safety lithium-ion batteries (LIBs) is greatly impeded by the flammability and leakage concerns of typical organic solvent-based electrolytes. As one of the alternative classes of electrolytes, hydrogel electrolytes exhibit high safety, high flexibility, low cost, and are benign to the environment. However, the narrow electrochemical stability window (ESW) of typical hydrogel electrolytes restricts the operating voltage of battery cells. Here, a new class of “water-in-eutectogel (WiETG)” electrolyte is reported, fabricated by combining a hydrogel with a “deep eutectic solvent” (LiTFSI in acetamide). The obtained WiETG electrolyte exhibits non-flammability, high ionic conductivity, and a wide ESW. LiMn2O4||Li4Ti5O12 cells with the WiETG electrolyte exhibit good cycling stability, high flexibility, and high safety. This newly developed WiETG electrolyte not only broadens the ESW of typical hydrogel electrolytes, but also opens a new perspective on future directions and guidance for the design of high safety electrolytes for flexible LIBs and beyond.
000907667 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907667 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907667 7001_ $$0P:(DE-HGF)0$$aPollard, Travis P$$b1
000907667 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b2$$eCorresponding author
000907667 7001_ $$0P:(DE-HGF)0$$aDu, Leilei$$b3
000907667 7001_ $$0P:(DE-Juel1)176763$$aJu, Xiaokang$$b4
000907667 7001_ $$0P:(DE-HGF)0$$aZhao, Wenguang$$b5
000907667 7001_ $$0P:(DE-HGF)0$$aLi, Meirong$$b6
000907667 7001_ $$0P:(DE-Juel1)168392$$aWang, Jun$$b7
000907667 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b8
000907667 7001_ $$0P:(DE-HGF)0$$aLin, Hai$$b9
000907667 7001_ $$0P:(DE-HGF)0$$aSun, Jingyu$$b10
000907667 7001_ $$0P:(DE-HGF)0$$aXu, Kang$$b11
000907667 7001_ $$0P:(DE-HGF)0$$aBorodin, Oleg$$b12$$eCorresponding author
000907667 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b13$$ufzj
000907667 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b14$$eCorresponding author
000907667 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202200401$$gp. 2200401 -$$n23$$p2200401 -$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000907667 8564_ $$uhttps://juser.fz-juelich.de/record/907667/files/Advanced%20Energy%20Materials%20-%202022%20-%20Hou%20-%20Water%E2%80%90in%E2%80%90Eutectogel%20Electrolytes%20for%20Quasi%E2%80%90Solid%E2%80%90State%20Aqueous%20Lithium%E2%80%90Ion.pdf$$yOpenAccess
000907667 909CO $$ooai:juser.fz-juelich.de:907667$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b13$$kFZJ
000907667 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907667 9141_ $$y2022
000907667 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907667 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907667 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000907667 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907667 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907667 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000907667 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000907667 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907667 9801_ $$aFullTexts
000907667 980__ $$ajournal
000907667 980__ $$aVDB
000907667 980__ $$aUNRESTRICTED
000907667 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907667 981__ $$aI:(DE-Juel1)IMD-4-20141217