001     907667
005     20240712113052.0
024 7 _ |a 10.1002/aenm.202200401
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/31441
|2 Handle
024 7 _ |a altmetric:127843679
|2 altmetric
024 7 _ |a WOS:000791450500001
|2 WOS
037 _ _ |a FZJ-2022-02144
082 _ _ |a 050
100 1 _ |a Hou, Xu
|0 P:(DE-Juel1)173731
|b 0
245 _ _ |a “Water‐in‐Eutectogel” Electrolytes for Quasi‐Solid‐State Aqueous Lithium‐Ion Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657111137_12977
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The development of high safety lithium-ion batteries (LIBs) is greatly impeded by the flammability and leakage concerns of typical organic solvent-based electrolytes. As one of the alternative classes of electrolytes, hydrogel electrolytes exhibit high safety, high flexibility, low cost, and are benign to the environment. However, the narrow electrochemical stability window (ESW) of typical hydrogel electrolytes restricts the operating voltage of battery cells. Here, a new class of “water-in-eutectogel (WiETG)” electrolyte is reported, fabricated by combining a hydrogel with a “deep eutectic solvent” (LiTFSI in acetamide). The obtained WiETG electrolyte exhibits non-flammability, high ionic conductivity, and a wide ESW. LiMn2O4||Li4Ti5O12 cells with the WiETG electrolyte exhibit good cycling stability, high flexibility, and high safety. This newly developed WiETG electrolyte not only broadens the ESW of typical hydrogel electrolytes, but also opens a new perspective on future directions and guidance for the design of high safety electrolytes for flexible LIBs and beyond.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pollard, Travis P
|0 P:(DE-HGF)0
|b 1
700 1 _ |a He, Xin
|0 P:(DE-Juel1)169319
|b 2
|e Corresponding author
700 1 _ |a Du, Leilei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ju, Xiaokang
|0 P:(DE-Juel1)176763
|b 4
700 1 _ |a Zhao, Wenguang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Meirong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wang, Jun
|0 P:(DE-Juel1)168392
|b 7
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 8
700 1 _ |a Lin, Hai
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Sun, Jingyu
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Xu, Kang
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Borodin, Oleg
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 13
|u fzj
700 1 _ |a Li, Jie
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1002/aenm.202200401
|g p. 2200401 -
|0 PERI:(DE-600)2594556-7
|n 23
|p 2200401 -
|t Advanced energy materials
|v 12
|y 2022
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/907667/files/Advanced%20Energy%20Materials%20-%202022%20-%20Hou%20-%20Water%E2%80%90in%E2%80%90Eutectogel%20Electrolytes%20for%20Quasi%E2%80%90Solid%E2%80%90State%20Aqueous%20Lithium%E2%80%90Ion.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907667
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21