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ABSTRACT

Dynamic stability is imperative for the operation of the electric power system. This article provides analytical results and effective stability
criteria focusing on the interplay of network structures and the local dynamics of synchronous machines. The results are based on an extensive
linear stability analysis of the third-order model for synchronous machines, comprising the classical power-swing equations and the voltage
dynamics. The article addresses the impact of Ohmic losses, which are important in distribution and microgrids but often neglected in
analytical studies. We compute the shift of the stability boundaries to leading order, and thus provide a detailed qualitative picture of the
impact of Ohmic losses. A subsequent numerical study of the criteria is presented, without and with resistive terms, to test how tight the
derived analytical results are.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082712

The secure supply of electric power relies on the stable, coordi-
nated operation of thousands of electric machines connected via
the power grid. At the transmission grid level, machines run syn-
chronously with fixed voltage magnitudes and stationary relative
phase angles defining a stationary state. The ongoing introduc-
tion of renewable power systems poses several challenges to the
stability of the system, as situations with highly loaded lines
and temporal fluctuations increase considerably. This trend takes
place in both the transmission grid at high voltages, as well as
in distribution grids and microgrids at medium and low volt-
ages. This article contributes to the understanding of dynamical
stability of electric power systems and provides a detailed analy-
sis of the third-order model for synchronous generators, which
includes the transient dynamics of voltage magnitudes. Special
emphasis is laid on the impact of Ohmic losses in the transmis-
sion of power, which are often neglected in analytical treatments
of power system stability. The analytical results thus find appli-
cability on all size scales of power grids, from transmission grids

to isolated microgrids, for openly tackling systems with losses in
a rigorous analytical manner. Furthermore, the results are inde-
pendent of the network construction and entail explicit criteria
for the connectivity of the power grid and the physical require-
ments needed to ensure stability in the presence of resistive
terms.

I. INTRODUCTION

The unwavering operation of the electric power systems is
vital to our daily life and the continued function of modern soci-
eties as a whole. Thus, an improved understanding of the electrical
system’s dynamic properties is especially relevant at present, as
more renewable energies enter the electric power grid systems.1,2

One of the key elements at play is the relative reduction of iner-
tial mass in power systems due to the penetration of renew-
able generation, which can lead to large dynamic responses to

Chaos 32, 053117 (2022); doi: 10.1063/5.0082712 32, 053117-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0082712
https://doi.org/10.1063/5.0082712
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0082712
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0082712&domain=pdf&date_stamp=2022-05-10
http://orcid.org/0000-0002-3240-0442
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0001-5513-0580
mailto:p.boettcher@fz-juelich.de
mailto:d.witthaut@fz-juelich.de
mailto:leonardo.rydin@gmail.com
https://doi.org/10.1063/5.0082712


Chaos ARTICLE scitation.org/journal/cha

disturbances.3–6 An expected higher grid load and stronger fluctu-
ating generation by wind and solar resources may further threaten
the dynamic stability.7–9 Additionally, conventional power gener-
ation typically involves large rotating masses that offer stabilizing
inertia.10

Power grids can be of various scales, spanning from entire
continents to single islands. Recently, the concept of microgrids
has emerged:11–13 partially independent power grids in smaller
environments that are coupled to a main power grid. These
power grids operate at lower voltages than conventional trans-
mission grids and are capable of producing their own power,
consequently working partially independently from an overly-
ing power grid.14,15 Microgrids embedded in power grids are still
ruled by a common understanding of fixed nominal reference
frequency, e.g., 50 Hz in Europe, among many other stability
criteria.16,17

Analytical approaches to stability in power grid systems are a
difficult task and generally rely on model simplifications to keep
the problem tractable.18–24 The most common simplification to
make stability problems mathematically tractable is the assumption
of having lossless systems.25,26 Various such studies with complex
dynamical models exist, cf. Schiffer et al.27–29 and Dörfler et al.,30,31

yet results are scarce for extended networks including resistive
terms, given the difficulty of tackling dissipative systems mathemat-
ically. The problem of losses in power grid systems is often tackled
using extensive numerical simulations.32,33

This article puts forth a set of mathematical stability cri-
teria for power grids based on the third-order model for
synchronous generators.34–39 The criteria can be employed for
various scales of power grids—for both transmission and distribu-
tion grids—evidencing the limitations entailed by the existence of
resistive terms on the operability of power grid systems. In particu-
lar, this article undertakes the task of intertwining results for graph
theory with the characteristics of the power grid construction and
their physical properties,40,41 extending a previous article on lossless
power grids.42

The article is structured in the following manner: Sec. II intro-
duces the basic dynamical model studied in this paper. In this
work, we present an analysis of the third-order model, compris-
ing transient voltage dynamics and considering extended grids with
complex topology and resistive losses. Section III tackles the lin-
ear stability analysis of the equations of motion, a reduction of
the problem to a matrix formulation, and develops a mathemati-
cal apparatus to unveil sufficient criteria for stability in a general
sense. Section IV introduces the two main lemmata of the article
from which various stability criteria are derived. Lemma 2 cov-
ers solely lossless grids and Lemma 4 extends the results to the
case of lossy transmission up to leading order in the losses in
the system, which is drawn from perturbation theory. In Sec. V,
the developed concepts are utilized to derive analytical stability con-
ditions for both lossless and lossy systems, presenting criteria for
stability not only for the power-angle and the voltage dynamics but
also for a mixed type of instabilities. These results also represent
a direct link to graph-theoretical measures. Section VI comprises
a set of numerical studies on model systems to check how tight
the derived bounds are. The conclusions follow subsequently in
Sec. VII.

II. MODELING SCALE-INDEPENDENT

NETWORK-BASED POWER GRIDS

A. Third-order model for synchronous generators

The third-order model for synchronous machines, denoted as
a one or q axis model, describes the transient dynamics of coupled
synchronous machines.10,32,33 It embodies the power or rotor angle
δ(t), relative to the power grid reference frame, the angular fre-
quency ω(t) = δ̇(t), in a co-rotating reference frame rotating with
the reference frequency �, and the transient voltage Eq(t), in the q
direction of a co-rotating frame of reference of each machine in the
system. It excludes sub-transient effects, i.e., higher-order effects,
and assumes that the transient voltage Ed in the d direction of the
co-rotating frame vanishes.

Sub-transient effects play a small role, especially in the case of
studying power grids in the vicinity of the steady state.43 The trun-
cation of the transient voltage Ed in the d axis is imposed out of
necessity to have an analytically tractable model. Still, the resulting
dynamical system is rather complex such that analytical results are
scarce and mostly restricted to lossless power grids. Hence, the scope
of the analysis here is twofold: to present the details of tackling sta-
bility of the rotor angle and voltage systems, while not shunning
away from complex network topologies and considering Ohmic
losses explicitly.

The equations of motion for one generator are given by10

δ̇ = ω,

Mω̇ = −Dω + Pm − Pel,

TĖ = Ef − E + (X − X′)I,

(1)

where henceforth E ≡ Eq denotes solely the voltage along the q axis,
and the dot denotes the differentiation with respect to time. Fur-
thermore, Pm denotes the effective mechanical input power of the
machine, Ef denotes the internal voltage or field flux, and Pel denotes
the electrical power out-flow. The parameters M and D are the iner-
tia and damping of the mechanical motion and T is the relaxation
time of the transient voltage dynamics. The voltage dynamics fur-
ther depend on the difference of the static reactance X and transient
reactance X′ along the d axis, where X − X′ > 0, in general, and the
current I along the d axis.

The active electrical power Pel
j exchanged with the power grid,

and the current Ij at the jth machine read34

Pel
j =

N
∑

`=1

EjE`

[

Bj,` sin(δj − δ`) + Gj,` cos(δj − δ`)
]

,

Ij =

N
∑

`=1

E`

[

Bj,` cos(δj − δ`) − Gj,` sin(δj − δ`)
]

,

(2)

where Ej and δj are the transient voltage and the rotor angle of the
jth machine, respectively. The parameters Gj,` and Bj,` denote the
real and imaginary parts of the nodal admittance matrix and encode
the network structure, respectively. Generally, Bj,` > 0 and Gj,` < 0
for all j 6= `. This article is especially concerned with the role of
Ohmic losses, which are described by the real parts of the nodal
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admittance matrix Gj,`. All quantities are usually made dimension-
less using appropriate scaled units referred to as the “pu system” or
“per unit system.”10

Load nodes are typically described by constant impedances to
the ground. These passive nodes can be eliminated from the network
equations via Kron reduction such that only generator nodes have to
be considered explicit.44,45 The remaining nodes are then connected
by an effective network that differs considerably from the physical
one. For instance, the reduced network is typically fully connected.

The equations of motion (1) for the jth synchronous machine,
in a system with N machines, take the form34,36,46

δ̇j = ωj,

Mjω̇j = Pm
j −Djωj−

N
∑

`=1

EjE`

[

Bj,` sin(δj−δ`) + Gj,` cos(δj−δ`)
]

,

(3)

TjĖj = E
f
j−Ej + (Xj−X′

j)

N
∑

`=1

E`

×
[

Bj,` cos(δj − δ`) − Gj,` sin(δj−δ`)
]

.

Most analytical studies so far neglected, under reasonable
assumptions, the line losses of the power grid structure. The terms
proportional to Gj,` are assumed to be negligible in comparison with
the terms proportional to Bj,`. Such arguments are reasonable for
the high-voltage transmission grid but are mostly unfounded for
distribution and microgrids, where the resistance and inductance of
the transmission lines are comparable.12 In addition, losses become
more considerable in magnitude when the transmitted power is
large. This manuscript puts forth a study of the system in full form,
not discarding the interplay of susceptance and conductance, i.e.,
fully integrating losses, by taking a perturbation theory approach to
the losses.

III. EQUILIBRIA AND LINEAR STABILITY ANALYSIS

A. Equilibrium states of power grid operation

The stationary operation of the voltages and power-angles of
the machines comprising the power grid is the cornerstone of oper-
ability of power grids. Constant voltages and perfect phase-locking,
i.e., a point in configuration space where all Ej, ωj and δj − δ` are
constant in time, is the desired state. The latter restriction requires
that all machines rotate at the same frequency, giving the time evo-
lution of the phases δj(t) = �t + δ◦

j for all j = 1, . . . , N, leading to
the conditions

ω̇j = Ėj = 0, δ̇j = �, ∀j = 1, . . . , N. (4)

In dynamical system terms, this is a stable limit cycle of the system,
also known as an isolated closed orbit. From a physical perspective,
all points on the limit cycle are equivalent as they only differ by a
global phase α, which is irrelevant for the operation of the power
grid. One can thus choose one of these points as a representative of
the limit cycle and refer to it as an “equilibrium.” The superscript ◦

is used to denote the values of the rotor-phase angle, frequency, and
voltage in this equilibrium manifold. Likewise, perturbations along

the limit cycle do not affect the power grid operation and can thus
be excluded from the stability analysis.

For the third-order model (3), an equilibrium of the power grid
is given by the nonlinear algebraic equations

� = ω◦
j ,

0 = Pm
j − Dj� −

N
∑

`=1

E◦
j E

◦
`

[

Bj,` sin(δ◦
j − δ`

j ) + Gj,` cos(δ◦
j − δ◦

` )
]

,

(5)

0 = E
f
j−E◦

j +(Xj − X′
j)

N
∑

`=1

E◦
`

[

Bj,` cos(δ◦
j − δ◦

` ) − Gj,` sin(δ◦
j − δ◦

` )
]

,

noting that many equilibria—stable and unstable—can exist in net-
works with sufficiently complex topology, although this does not
preclude performing a linear stability analysis.23,47–50

B. Linear stability analysis

A central tool of dynamical systems study is linear or small-
signal stability analysis.51,52 The local stability properties of an equi-
librium (δ◦

j , ω◦
j , E◦

j ), i.e., stability with respect to small perturbations
around an equilibrium point, can be obtained by linearizing the
equations of motion of the system (3).

To perform a linear stability analysis of (3), one can introduce
the perturbations ξj, νj, and εj, such that

δlin
j (t) = δ◦

j + ξj(t), ω
lin
j (t)=ω◦

j + νj(t), E
lin
j (t)=E◦

j + εj(t). (6)

The rotor angle perturbation ξj, the frequency perturbation νj, and
the voltage perturbation εj can, individually or collectively, decay
to zero or grow indefinitely. The fixed point (δ◦

j , ω◦
j , E◦

j ) is either
stable or unstable, correspondingly. This is also known as “expo-
nential stability” or “small-signal stability.” This, on the other hand,
does not exclude the existence of other attractors in state space, but
the linearization around a fixed point will only preserve the correct
dynamically behavior close to the treated fixed point.

Applying the linearization of (3) while simultaneously gauging
onto a rotating frame of reference, with rotation frequency � as in
(4), yields

ξ̇j = νj,

Mjν̇j = −Djνj−

N
∑

`=1

(3j,` + 0j,`)ξ` +

N
∑

`=1

(A`,j+Cj,`)ε`,

Tjε̇j = −εj + (Xj−X′
j)

N
∑

`=1

(Hj,` + Kj,`)ε`

+ (Xj − X′
j)

N
∑

`=1

(Aj,`+Fj,`)ξ`,

(7)
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where matrices 3, 0, A, C, F, H, and K ∈ R
N×N (written in compo-

nent form above) are given by

3j,` =

{
−E◦

j E
◦
`Bj,` cos(δ◦

` − δ◦
j ) for j 6= `,

∑

k 6=j E◦
j E

◦
kBj,k cos(δ◦

k − δ◦
j ) for j = `,

0j,` =

{
−E◦

j E
◦
`Gj,` sin(δ◦

` − δ◦
j ) for j 6= `,

∑

k 6=j E◦
j E

◦
kGj,k sin(δ◦

k − δ◦
j ) for j = `,

Aj,` =

{
−E◦

`Bj,` sin(δ◦
` − δ◦

j ) for j 6= `,
∑

k E◦
kBj,k sin(δ◦

k − δ◦
j ) for j = `,

Cj,` =

{
−E◦

j Gj,` cos(δ◦
` − δ◦

j ) for j 6= `,
−E◦

j Gj,` −
∑

k E◦
kGj,k cos(δ◦

k − δ◦
j ) for j = `,

Fj,` =

{
E◦

`Gj,` cos(δ◦
` − δ◦

j ) for j 6= `,
−

∑

k 6=j E◦
kGj,k cos(δ◦

k − δ◦
j ) for j = `,

Hj,` = Bj,` cos(δ◦
` − δ◦

j ),

Kj,` = Gj,` sin(δ◦
` − δ◦

j ).

(8)

The diagonal matrices M, D, X, and T (all in R
N×N) comprise the

elements Mj, Dj, (Xj − X′
j), and Tj for j = 1, . . . , N, respectively. All

these diagonal matrices are positive definite.
The linearized system (7) takes a compact matrix formulation,

where the linearized terms are elegantly combined into the Jaco-
bian matrix J ∈ R

3N×3N, by defining the vectors ξ = (ξ1, . . . , ξN)>, ν
= (ν1, . . . , νN)>, and ε = (ε1, . . . , εN)>, each in R

N, with the super-
script > denoting the transpose of a matrix or vector. The linearized
equations can be written as

d

dt





ξ

ν

ε



 = J





ξ

ν

ε



 , (9)

with

J =





0 1l 0
−M−1(3 + 0) −M−1D M−1(A> + C)

T−1X(A + F) 0 T−1
(

X(H + K) − 1l
)



 . (10)

The Jacobian J can be brought to a different form that clearly por-
trays the interplay between the matrices comprising the susceptance
Bj,` and the conductance terms Gj,` of the power lines and machines,

J =





1l 0 0
0 M−1 0

0 0 T−1X





×









0 1l 0
−3 −D A>

A 0 H − X−1



 +





0 0 0
−0 0 C

F 0 K







 . (11)

This decomposition is conspicuously designed to work out the
impact of Ohmic losses. The left matrix in the square brackets
includes all terms that are present in a lossless grid, and the right
matrix composed of the block matrices 0, C, F, and K embodies all
the matrices associated with resistive losses. The cleavage into two
parts will prove useful hence onward.

C. Linear stability and eigenvalues of the Jacobian

An equilibrium (δ◦
j , ω◦

j , E◦
j ) is linearly stable if perturbations in

the linearized system (7) decay exponentially. In general, this is the
case if and only if all eigenvalues of the Jacobian matrix J have a
negative real part.52,53

In the present case, one has to take into account that the
dynamical system incorporates a fundamental symmetry,

9α : δ 7→ δ + α 1,

S
N → S

N,
(12)

where 1 is a vector of ones and α ∈ R. A shift of all nodal phase
angles by a constant value does not have any physical effects: all
flows, currents, and stability properties remain unaffected. A geo-
metric interpretation of this symmetry is obtained by viewing the
desired operation of the power grid as a limit cycle. As all points
along the cycle are equivalent for power grid operation, one can take
an arbitrary point as a representative of the limit cycle and refer to it
as “the equilibrium.”

As a consequence of this symmetry, any perturbation corre-
sponding to a global phase shift or a shift along the limit cycle,
respectively, should be excluded from the stability analysis. This
perturbation is encoded in the eigenvector





ξ

ν

ε



 =





1
0
0



 , (13)

with the associated eigenvalue µ = 0. To exclude this mode from the
stability analysis, we restrict ourselves to perturbations in orthogo-
nal subspaces defined as

D
(3)
⊥ =

{

(ξ , ν, ε) ∈ R
3N|(1, 0, 0)>(ξ , ν, ε) = 0

}

,

D
(2)
⊥ =

{

(ξ , ε) ∈ R
2N|(1, 0)>(ξ , ε) = 0

}

,

D
(1)
⊥ =

{

ξ ∈ R
N|1>ξ = 0

}

.

(14)

These subspaces are always one dimension smaller than the over-
branching space. The subscript D

(·)
⊥ refers to the orthogonality

devised here, i.e., these spaces are orthogonal to the stable manifold.
Having defined the spaces of operation, one turns to the Jaco-

bian matrix (11) to unravel the definition of linear stability. Consider
the eigenvalues µ1, µ2, . . . , µ3N ∈ C

3N of the Jacobian defined via

J





ξ

ν

ε



 = µ





ξ

ν

ε



 . (15)

There is always one vanishing eigenvalue µ1 = 0 corresponding to
the global shift of all nodal phases, as discussed above. One excludes
this mode from the definition of stability and orders the remaining
eigenvalues according to their real parts, without loss of generality,

µ1 = 0, <(µ2) ≤ <(µ3) ≤ · · · ≤ <(µ3N). (16)

D. Alternative formulations of the eigenvalue problem

We note that the eigenvalue problem (15) can be reformu-
lated in different ways, which are useful for both analytic studies
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and numerical computation. First, one can obtain the eigenvalues
µ from a generalized eigenvalue problem,





−3 − 0 0 A> + C

A + F 0 H − X−1 + K

0 M 0









ξ

ν

ε





= µ





D M 0
0 0 X−1T

M 0 0









ξ

ν

ε



 . (17)

To see this, we decompose the original problem (15) in components

ν = µξ , (18a)

−M−1
(

(3 + 0)ξ + Dν − (A> + C)ε
)

= µν, (18b)

T−1X
(

(A + F)ξ + (H − X−1 + K)ε
)

= µε. (18c)

We multiply (18a) with M and (18c) with X−1T. Furthermore, we
substitute (18a) in (18b) and multiply the resulting equation with M

and obtain

Mν = µMξ ,

−(3 + 0)ξ + (A> + C)ε = µ (Mν + Dξ) ,

(A + F)ξ + (H − X−1+ K)ε = µX−1Tε.

(19)

In matrix form, this leads to (17).
Second, one can obtain the eigenvalue µ from a nonlinear

eigenvalue problem in a lower dimensional space
[(

−3 − 0 A> + C

A + F H − X−1+ K

)

− µ

(

D 0
0 X−1T

)

− µ2

(

M 0
0 0

)]

×

(

ξ

ε

)

=

(

0
0

)

. (20)

The remaining component of the eigenvector is then fixed
as ν = µξ . We derive this reformulation starting again from the
decomposition (18). Substituting (18a) into (18b) and multiplying
with M eliminates ν. Furthermore, we multiply (18c) with X−1T and
obtain

−(3 + 0)ξ + (A> + C)ε − µDξ − µ2Mξ = 0,

(A + F)ξ + (H − X−1+ K)ε − µX−1Tε = 0.
(21)

In matrix form, this results in (20). With this in hand, we now intro-
duce the main lemmata of this work that shall pave the way to several
analytical criteria in the later sections.

IV. ANALYTIC STABILITY RESULTS

A. The lossless case

The lossless case was previously analyzed in detail in Ref. 42, so
we only review the essential results very briefly. Most importantly,
linear stability is determined by a reduced, Hermitian Jacobian
matrix. We state this result in the following lemma.

Lemma 1. The linear stability of an equilibrium (δ◦
j , ω◦

j , E◦
j ) is

determined by the reduced Jacobian

4 =

(

−3 A>

A H − X−1

)

. (22)

The equilibrium is stable if 4 is negative definite onD
(2)
⊥ . It is unstable

if 4 is not negative semi-definite.
Proof. Define the Lyapunov function candidate

V =





ν

ξ

ε





> 



M 0 0
0 3 −A>

0 −A −
(

H−X−1
)





︸ ︷︷ ︸

=:P





ν

ξ

ε



 . (23)

Then one can find

V̇ = −ν̇>Mν − ν>Mν̇ + ξ̇
>
3ξ + ξ>3ξ̇ − ε̇>Aξ − ε>Aξ̇

− ξ̇
>
A>ε − ξ>A>ε̇ − ε̇>

(

H−X−1
)

ε − ε>
(

H−X−1
)

ε̇

= −2ν>Dν − 2
[

ξ>A>XT−1Aξ̇

+ ε>
(

H−X−1
)

XT−1Aξ̇

+ ξ>A>T−1X
(

H−X−1
)

ε̇

+ε>
(

H−X−1
)

T−1X
(

H−X−1
)

ε̇
]

= −2ν>Dν

− 2
[

ξ>A>+ ε>
(

H−X−1
)]

XT−1
[

Aξ +
(

H − X−1
)

ε
]

< 0. (24)

The last inequality follows as the matrices X, T, and D are diagonal
with only positive entries. If 4 is negative definite, then P is positive
definite and the equilibrium is stable according to Lyapunov’s sta-
bility theorem. If 4 is not negative semi-definite, then also P is not
positive semi-definite and the equilibrium is unstable according to
Lyapunov’s instability theorem. �

The reduced Jacobian can be further decomposed into the
subspace corresponding to perturbations of the angles or voltages,
respectively. This is especially helpful for the derivation of rigorous
stability criteria, cf. Ref. 42.

Lemma 2 (Sufficient and necessary stability conditions for
lossless systems).

I. The equilibrium (δ◦
j , ω◦

j , E◦
j ) of the lossless grid is linearly sta-

ble if (a) the matrix 3 is positive definite on D
(1)
⊥ and (b) the

matrix H − X−1 + A3+A> is negative definite, where ·+ is the
Moore–Penrose pseudoinverse. The equilibrium is unstable if any
of the two matrices is not negative semi-definite.

II. The equilibrium (δ◦
j , ω◦

j , E◦
j ) of the lossless grid is linearly sta-

ble if (a) the matrix H − X−1 is negative definite and (b) the

matrix 3 + A>(H − X−1)
−1

A is positive definite on D
(1)
⊥ . The

equilibrium is unstable if any of the two matrices is not negative
semi-definite.

This result follows from Lemma 1 by applying the Schur com-
plement, where some care has to be taken to distinguish definiteness
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and semi-definiteness as well as about the domain of the matrices.54

Details are given in Sharafutdinov et al.42

B. The lossy case

We now drop the simplification of a lossless grid and ana-
lyze how the presence of resistive terms alters the linear stability
of the grid. Complete rigorous results are hard to obtain as the
relevant matrices are no longer Hermitian. In particular, the one-
to-one correspondence between the definiteness and the signs of the
eigenvalues does no longer apply. However, we show that the above
results can be generalized in a straightforward way to leading order
in the losses.

The starting point of our analysis is the generalized eigenvalue
problem (17) which is written in shorthand as

Axn = µnBxn. (25)

The matrix A is decomposed into its Hermitian and anti-Hermitian
part,

A = AH + εAA. (26)

The anti-Hermitian part AA scales with the Ohmic losses and is
absent in the lossless case. The key idea of this section is to treat
this matrix as a small perturbation. Then, we can show the following
results. (i) The unperturbed case can be treated as in the lossless case,
leading to a reduced Jacobian. (ii) The perturbations affect the stabil-
ity equilibrium—encoded in the real part of the eigenvalues—only to
quadratic order in the losses. Hence, the impact of Ohmic losses on
the linear stability of an equilibrium can be studied to leading order
via a reduced Jacobian.

The central objective of interest is again the reduced Jacobian
4, which now reads

4 =

(

−3 − 0 A> + C,
A + F H − X−1 + K

)

. (27)

For the further analysis, we decompose it into its Hermitian and
anti-Hermitian part, 4 = 4H + 4A, with

4H =
1

2

(

4 + 4>
)

=

(

−3 − 0d A> + N

A + N H − X−1

)

,

4A =
1

2

(

4 − 4>
)

,

(28)

with the Hermitian matrices

0d =
1

2

(

0 + 0>
)

,

N =
1

2
(C + F) .

(29)

One can find that these matrices are all diagonal with entries

0d
j,j =

N
∑

k 6=j

E◦
j E

◦
kGj,k sin(δ◦

k − δ◦
j ),

Nj,j =

N
∑

k 6=j

E◦
kGj,k cos(δ◦

k − δ◦
j ).

(30)

Lemma 3. The eigenvalues of the Jacobian are given by the
Hermitian generalized eigenvalue problem





−3 − 0d A> + N 0
A + N H − X−1 0

0 0 M



 xn = µn





D 0 M

0 X−1T 0
M 0 0



 xn,

(31)
up to corrections of quadratic order in 4A, assuming that the eigen-
values are semi-simple.

Proof. The result is proven using a standard perturbation the-
ory argument, treating 4A as a small perturbation. For the sake of
convenience, we abbreviate the matrices in the generalized eigen-
value problem (17) such that we have the equation

Axn = µnBxn. (32)

We write

A = AH + εAA, (33)

where AH is the Hermitian part and AA is the anti-Hermitian part
treated as a perturbation. We note that most examples in the liter-
ature are restricted to Hermitian definite problems, i.e., problems
where both matrices are Hermitian and B is also positive definite.
This is not the case even for the unperturbed system ε = 0, as B is
not definite such that a very careful analysis is needed.

We now expand eigenstates and eigenvalues as

µn = µ(0)
n + εµ(1)

n + ε2µ(2)
n + . . . ,

xn = x(0)
n + εx(1)

n + ε2x(2)
n + . . . ,

(34)

and substitute this ansatz into the generalized eigenvalue problem.
To zeroth order in ε, we obtain

AHx(0)
n = µ(0)

n Bx(0)
n , (35)

that is, we obtain (31). The unperturbed eigenvectors can be chosen
to be orthogonal with respect to the matrix B,

x(0)>
m Bx(0)

n = 0, if µ(0)
n 6= µ(0)

m . (36)

This property, well known for ordinary eigenvalue problems,
extends to Hermitian generalized eigenvalue problems as one can
check by a direct computation,

µ(0)
n x(0)>

m Bx(0)
n = x(0)>

m Ax(0)
n =

(

A
>x(0)

m

)>
x(0)

n

= µ(0)
m

(

B
>x(0)

m

)>
x(0)

n = µ(0)
m x(0)>

m Bx(0)
n ,

which is only possible if (36) holds. We now turn back to the
perturbed problem. To first order in ε, we obtain

AAx(0)
n + AHx(1)

n = µ(0)
n Bx(1)

n + µ(1)
n Bx(0)

n . (37)
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Multiplying from the left by x(0)>
n and exploiting that x(0)>

n AH

= µ(0)
n x(0)>

n B yields

µ(1)
n =

x(0)>
n AAx(0)

n

x
(0)>
n Bx

(0)
n

. (38)

Now we can use the fact that AA is anti-symmetric to obtain

x(0)>
n AAx(0)

n =
(

x(0)>
n AAx(0)

n

)>

= x(0)>
n A

>
A x(0)

n = −x(0)>
n AAx(0)

n . (39)

Hence, we have

x(0)>
n AAx(0)

n = 0 ⇒ µ(1)
n = 0. (40)

That is, the linear order correction to the eigenvalues vanishes,
leaving terms of quadratic or higher order. �

We conclude that—to leading order in the losses—only the
Hermitian part of the Jacobian is relevant for stability. We can gen-
eralize all results from the lossless case if we replace the reduced
Jacobian (22) by the matrix 4H defined in (28). In particular,
Lemma 2 is generalized as follows.

Lemma 4. To leading order in the Ohmic losses the linear sta-
bility of an equilibrium (δ◦

j , ω◦
j , E◦

j ) is determined by the Hermitian

part of the reduced Jacobian matrix: stable if 4H is negative defi-

nite on D
(2)
⊥ and unstable if 4H is not negative semi-definite. Stability

conditions for this matrix can be decomposed as follows:

I. The matrix 4H is negative definite on D
(2)
⊥ if (a) the matrix 3 +

0d is positive definite on D
(1)
⊥ and (b) the matrix H − X−1 + (A

+ N)(3 + 0d)
+
(A + N)> is negative definite. The matrix 4H

is non-negative semi-definite if any of the two matrices is not
negative semi-definite.

II. The matrix 4H is negative definite on D
(2)
⊥ if (a) the matrix

H − X−1 is negative definite and (b) the matrix (3 + 0d)

+ (A + N)>(H − X−1)
−1

(A + N) is positive definite on D
(1)
⊥ .

The matrix 4H is non-negative semi-definite if any of the two
matrices is not negative semi-definite.

We will henceforth work with Lemma 4, where we note that
the lossless case is recovered when 0d = N = 0 and we return to
Lemma 2.

C. Sufficient stability conditions for the lossy case

Our previous reasoning shows that the stability in a lossy grid
is described by the Hermitian matrix 4H—up to corrections of
quadratic order in the Ohmic losses. While this approach is very
convenient and enables further analytic studies, it does not give
any quantitative results on the magnitude of the corrections. Here,
we provide a rigorous sufficient stability condition that generalizes
the condition of negative definiteness of the reduced Jacobian in
Lemma 1.

Lemma 5. Let (δ◦
j , ω◦

j , E◦
j ) be an equilibrium of the lossy

grid. The equilibrium is stable if for all vectors x ∈ {C2N|x

6= 0, (1>, 0>)x = 0}

x†4Hx <

(

x†9x
)

(

x†8x
)2

(

x†4Ax
)2

(41)

with the abbreviations

8 =

(

D 0
0 TX−1

)

, 9 =

(

M 0
0 0

)

. (42)

Proof. We start from the nonlinear eigenvalue problem (20)
and multiply from the left with the Hermitian conjugate of the
eigenstate (ξ†, ε†) to obtain the algebraic equation

η1 + η2µ + η3µ
2 = 0, (43)

with

η1 = −

(

ξ

ε

)†

4

(

ξ

ε

)

,

η2 =

(

ξ

ε

)†

8

(

ξ

ε

)

> 0,

η3 =

(

ξ

ε

)†

9

(

ξ

ε

)

≥ 0.

(44)

The coefficients η2 and η3 are real and non-negative as the matrices
D, M, T, and X are diagonal with strictly positive entries (except for
the trivial case ξ = 0 for which η3 = 0). We first consider the case
η3 = 0 for which µ = −η1/η2. Hence, we immediately see that if 4H

is negative definite, we have <(µ) < 0.
Now assume η3 > 0. For the remaining coefficient η1, we write

η1 = α + iβ ,

⇒ α = −

(

ξ

ε

)†

4H

(

ξ

ε

)

,

iβ = −

(

ξ

ε

)†

4A

(

ξ

ε

)

.

(45)

The algebraic (43) can now be solved for µ such that

µ =
−η2 ±

√

η2
2 − 4η3(α + iβ)

2η3
. (46)

To ensure stability, the real part of µ needs to be strictly smaller than
zero, which translates to

<

(√

η2
2 − 4η3(α + iβ)

)

< η2. (47)

One can now show by an explicit calculation that this is the case if

α >
η3β

2

η2
2

. (48)

Hence, if the assumption (41) is satisfied for all vectors, we indeed
have <(µ) < 0 and the equilibrium is stable. �

We note that the lemma can also be stated in a slightly differ-
ent form, avoiding the complicated assumptions about the domain
of the vector Ex. Assuming that the trivial eigenvalue µ1 = 0 is the
only eigenvalue on the imaginary axis, the stability condition (41)
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can be relaxed and simplified: we can replace the < sign by ≤ in the
condition and simplify the domain to Ex 6= E0.

Lemma 5 provides a rigorous sufficient condition for linear sta-
bility in lossy grids. However, it might be hard to apply in practice
due to its nonlinearity. We now derive a simpler, yet coarser con-
dition by bounding the right-hand side (RHS) in (41). To quantify
the overall strength of the Ohmic losses, we consider the following
characteristic that is inspired by the degree of a node in a weighted
network:

Ĝj = |Gj,j| +
∑

` 6=j

|Gj,`|, (49)

as well as the maximum “degree” in the network,

Ĝmax = max
j

Ĝj. (50)

Furthermore, we define Mmax = maxj Mj and

ζ1 = max
j=1,...,N

(

E◦
j /

√

Dj +
√

Xj/Tj

)

, (51)

ζ2 = max
j=1,...,N

[

max
(

E◦
j /

√

Dj,
√

Xj/Tj

)]

. (52)

Lemma 6. Let (δ◦
j , ω◦

j , E◦
j ) be an equilibrium of the lossy grid.

If the matrix

4H + Mmax ζ 2
1 ζ 2

2 Ĝ2
max1l (53)

is negative definite on D
(2)
⊥ , then the equilibrium is stable.

Proof. To prove this statement, we have to bind the right-hand
side in (41). Defining y = 81/2x and S = i8−1/24A8−1/2, we have

(

x†i4Ax
)2

(

x†8x
)2 =

(

y†Sy
)2

‖y‖4
≤ ρ(S)2, (54)

where ρ(S) is the dominant eigenvalue of the Hermitian matrix S.
We now bound this eigenvalue using Geršgorin’s circle theorem.
The diagonal of S vanishes and so do the centers of the Geršgorin
disks. Hence, we find that every eigenvalue γ of S satisfies |γ |
≤

∑

` |Sj,`| for some index j such that

ρ(S) ≤ max
j=1,...,2N

∑

` 6=j

|Sj,`|. (55)

Inserting the definition of S, we have for j ≤ N

∑

`

|Sj,`| =
∑

` 6=j

|0j,`|
√

DjD`

+
1

2

∑

`

√

X`

DjT`

|Cj,` − F`,j|

≤
∑

` 6=j

E◦
j E

◦
`|Gj,`|

√

DjD`

+
∑

`

√

X`

DjT`

E◦
j |Gj,`|

≤
E◦

j
√

Dj

ζ1Ĝj.

For j > N, with i = j − N, we obtain

∑

`

|Sj,`| =

N
∑

` 6=i

√

XiX`

TiT`

|Ki,`| +
1

2

∑

`

√

Xi

D`Ti

|Fi,` − C`,i|

≤

N
∑

` 6=i

√

XiX`

TiT`

|Gi,`| +
∑

`

√

Xi

D`Ti

E◦
`|Gi,`|

≤

√

Xi

Ti

ζ1Ĝi.

Thus, we find that

ρ(S) ≤ ζ1 ζ2 Ĝmax. (56)

Furthermore, it is easy to see that
(

x†9x
)

≤ Mmax‖x‖2 . (57)

Now we use these bounds to prove stability. The negative def-
initeness of 4H + Mmaxζ

2
1 ζ 2

2 Ĝ2
max1l implies that for all vectors x

∈ D
(2)
⊥ , we have

(

x†4Hx
)

+ Mmaxζ
2
1 ζ 2

2 Ĝ2
max

(

x†x
)

< 0. (58)

Using the bounds in (56) and (57), we then find
(

x†4Hx
)

< −Mmax‖x‖2ζ 2
1 ζ 2

2 Ĝ2
max

≤ −
(

x†9x
)

(

x†i4Ax
)2

(

x†8x
)2 . (59)

Hence, the condition in Lemma 5 is satisfied and the equilibrium is
stable. �

Analogous to Lemma 5, this lemma can be formulated without
the restriction toD(2)

⊥ and with the assumption that there is no eigen-
value, other than the trivial eigenvalue µ1 = 0, on the imaginary
axis.

V. EXPLICIT STABILITY CRITERIA

A. Stability of the rotor angle and voltage systems

The decomposition of the reduced Jacobian in Lemma 4 is of
fundamental importance to this work, as it evinces the roles of the
rotor angle and the voltage dynamics for the stability of the third-
order model.

Consider first the isolated power-angle dynamics, assuming
that the voltages Ej remain fixed. Fixing ε = 0, the linearized equa-
tions of motions read

d

dt

(

ξ

ν

)

=

(

0 1l
−M−1(3 + 0) −M−1D

) (

ξ

ν

)

. (60)

Performing the same simplification as in Sec. IV, one can find that
the isolated rotor angle dynamics is linearly stable—to leading order
in the losses—if and only if the matrix 3 + 0d is positive definite on
D

(1)
⊥ .

Similarly, consider the isolated voltage dynamics by assuming
that the rotor angle remains fixed. Fixing ν = ξ = 0, the linearized
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equations of motion read

d

dt
ε = T−1X(H − X−1 + K) ε. (61)

Hence, one finds that the isolated voltage dynamics is linearly sta-
ble—to leading order in the losses—if and only if the matrix H

− X−1 is negative definite.
In conclusion, one finds that the criteria I (a) and II (a) in

Lemma 4 ensure the stability, to linear order in the losses, of the
isolated rotor angle or voltage subsystem, respectively. Linear sta-
bility of the entire system is ensured if and only if, in addition, the
complementary criteria I (b) or II (b) are satisfied.

To further elucidate the nature of the stability conditions,
consider the full stability criterion I in Lemma 4. Assume that cri-
terion I (a) is satisfied, i.e., 3 + 0d is positive definite on D

(1)
⊥ ,

and the rotor angle subsystem is linearly stable to leading order in
the losses. The complementary criterion I (b), i.e., H − X−1 + (A

+ N)(3 + 0d)
+
(A + N)>, is negative definite. This condition is far

stricter than the condition of pure stability of the voltage system,
i.e., H − X−1 is negative definite. Hence, stability of the two isolated
subsystems is not sufficient, instead they must comprise a certain
“security margin” in order to maintain linear stability.

Making use of the angle-voltage decomposition, one can derive
explicit necessary and sufficient stability criteria. To this end, we
first consider the isolated subsystems and subsequently the compos-
ite dynamics of the full system. Note that the lossless case has been
discussed in Ref. 42; thus, here the focus is placed on the impact of
Ohmic losses in leading order.

B. Stability of the voltage system

Criterion II (a) in Lemma 4 entails the stability of the isolated
voltage subsystem—up to leading order in the losses. A violation
implies the instability of the voltage dynamics, and as a consequence
also the instability of the entire system, including the rotor angle and
frequency dynamics.

Most remarkably, criterion II (a) includes only the matrices H

and X, which are also present in the lossless case.42 To leading order,
Ohmic losses in the transmission lines thus affect the stability of
the voltage system only indirectly via the position of the respective
equilibrium, in particular, via the equilibrium rotor angles δ◦

j , which
enter the matrix H. Due to the similarity to the lossless case, this
work refrains from a detailed analysis of the stability of the voltage
system and only quotes two results from Sharafutdinov et al.42

Corollary 1. If for all nodes j = 1, . . . , N,

(Xj − X′
j)

−1
>

N
∑

`=1

Bj,`, (62)

then the matrix H − X−1 is negative definite.
Corollary 2. If for any subset of nodes S ⊂ {1, 2, . . . , N},

∑

j∈S

(Xj − X′
j)

−1
≤

∑

j,`∈S

Bj,` cos(δ◦
` − δ◦

j ), (63)

then the matrix H − X−1 is not negative definite and the necessary
stability condition in Lemma 4 is violated.

C. Rotor angle stability

Criterion I (a) in Lemma 4 entails the stability of the isolated
rotor angle subsystem. Briefly take the lossless case into considera-
tion, for which rotor angle stability is determined by the matrix 3.
The isolated subsystem is stable if 3 is positive definite on D

(1)
⊥ or,

equivalently, if the eigenvalues satisfy 0 < λ2 < · · · < λN. One can
directly derive sufficient stability criteria in terms of the angle dif-
ferences in the grid: If for all connections (j, `) in a power grid one
has

cos
(

δ◦
j − δ◦

`

)

> 0, (64)

then the isolated rotor angle subsystem is stable. This follows from
the fact that 3 is a proper Laplacian matrix of a weighted undirected
graph, which is well known to be positive definite on D

(1)
⊥ . If the

condition is not satisfied for a line, the matrix 3 rather describes
a signed graph, for which positive definiteness is more involved.55

Sufficient and necessary criteria have been obtained in Refs. 56–59.
One can generalize the above condition to power grids with

Ohmic losses in the following way.
Corollary 3. If for all connections (j, `) in a power grid, one

has

Bj,` cos
(

δ◦
` − δ◦

j

)

+ Gj,` sin
(

δ◦
` − δ◦

j

)

> 0, (65)

then the eigenvalue λ2, . . . , λN of 3 + 0 has a positive real part and

the matrix 3 + 0d is positive definite on D
(1)
⊥ , such that the isolated

angle subsystem is linearly stable to leading order in the losses.
Proof. The statement can be proved by applying Geršgorin’s

circle theorem60 to 3 + 0. Each eigenvalue of this matrix λj is bound
to exist in a disk of radius Rj =

∑

` 6=j |3j,` + 0j,`| around the center
3j,j + 0j,j such that

|λj − (3j,j + 0j,j)| ≤
∑

` 6=j

|3j,` + 0j,`|. (66)

If condition (65) is satisfied, one can simplify this relation to

|λj − (3j,j + 0j,j)| ≤
∑

` 6=j

3j,` + 0j,` = (3j,j + 0j,j), (67)

which directly yields

<(λj) ≥ 0. (68)

Now one furthers show that λ1 = 0 is the only vanishing eigenvalue
of 3 + 0 such that

<(λj) > 0, j = 2, . . . , N. (69)

For every non-zero vector x ∈ D
(1)
⊥ , we thus have

x>(3 + 0d) x = <
[

x>(3 + 0) x
]

> 0, (70)

and (3 + 0d) is positive definite on D
(1)
⊥ . �

We see that even the case of rotor angle stability becomes much
more involved in the lossy case due to the presence of the matrix
0. This holds especially for the interpretation of results in terms
of the network structure. In the lossless case, the stability condi-
tion can be rephrased as λ2 > 0, which is particularly convenient
as λ2 is a measure of the network’s algebraic connectivity. Hence,
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the stability condition can be interpreted in terms of graph topol-
ogy and connectivity.61 This relation no longer applies in the lossy
case. In particular, 3 + 0 is a Laplacian, but of a directed signed
graph. Hence, the eigenvalues are not guaranteed to be real. In con-
trast, the matrix 3 + 0d is Hermitian and thus has real eigenvalues,
but it is no longer a Laplacian matrix such that the interpretation
of its lowest non-zero eigenvalue as a connectivity does no longer
hold. However, the relation still holds approximately if we restrict
ourselves to the leading order impact of Ohmic losses.

Lemma 7. To leading order in the losses, the eigenvalues of
3 + 0 and 3 + 0d coincide.

Proof. In identical fashion to the proof of Lemma 3, consider

(3 + 0) xn = λnxn, (71)

with xn and λn being the respective eigenstates and eigenvalues. Sep-
arate 3 + 0 into Hermitian and anti-Hermitian parts and take the
anti-Hermitian part as a perturbation. Consider an expansion of the
eigenstates and normalized eigenvalues as in (34). To leading order
in the losses,

x(0)>
n (3 + 0) x(0)

n = x(0)>
n (3 + 0d) x(0)

n = λn, (72)

thus the eigenvalues of 3 + 0 and 3 + 0d coincide. �

In the following, we will formulate several stability criteria for
the full system applying to the leading order in the losses. We fre-
quently use the eigenvalues λ2, which is assumed to be real and
interpreted as a connectivity, and the associated eigenvector vF

called the Fiedler vector.61–64 We stress that this is not necessarily
true but is appropriate to leading order in the losses as shown above.

D. Mixed instabilities

We now turn to the interplay of voltage and angle stability, i.e.,
further investigating criteria I (b) and II (b) in Lemma 4. Unless
stated otherwise, consider an equilibrium such that the criteria I (a)
and II (a) in Lemma 4 are satisfied. Hence, the isolated subsystems
are stable, but the full system can still become unstable.

To begin, consider the case where the voltage dynamics are
very stiff, i.e., the case where (Xj − X′

j) are small. Recall that in the
limit (Xj − X′

j) → 0, the voltage dynamics are trivially stable such
that stability is determined solely by the angular subsystem. One can
extend this analysis to the case of small but non-zero (Xj − X′

j) and
relate stability to the connectivity of the power grid. The stability of
the isolated rotor angle subsystem is ensured if [cf. criterion I (a) in
Lemma 4, or Refs. 30 and 42],

<(λ2) > 0, (73)

where λ2 is the lowest non-zero eigenvalue of the Laplacian 3 + 0,
interpreted as the algebraic connectivity, which is real to leading
order in the Ohmic losses.

Corollary 4. To leading order in the Ohmic losses, a necessary
condition for the stability of an equilibrium point is given by

λ2 > v
†
F

[

A>XA + 2A>XN + NXN
]

vF + O((Xj − X′
j)

2
), (74)

where vF denotes the Fiedler vector of the Laplacian 3 + 0 for (Xj

− X′
j) ≡ 0.

Proof. The normalized Fiedler vector, at (Xj − X′
j) ≡ 0, is

denoted vF. The actual normalized Fiedler vector, for a particular
non-zero value of the (Xj − X′

j), is denoted v′
F, such that

v′
F = vF + O((Xj − X′

j)
1
). (75)

Take the expansion

−(H − X−1)
−1

= (X−1 − H)
−1

=

∞
∑

`=0

X(XH)`, (76)

such that at lowest order one obtains

(X−1 − H)
−1

= X + O((Xj − X′
j)

2
). (77)

Now, criterion II (b) in Lemma 4 can be reformulated as follows: For
all non-zero vectors y ∈ C

N, we must have

y†(3 + 0d)y > y†(A + N)>(X−1 − H)
−1

(A + N)y. (78)

For a particular choice of y, one obtains a necessary condition for
stability. Taking y = v′

F, the above results in

λ2 > v′†
F(A + N)>(X−1 − H)

−1
(A + N)v′

F, (79)

where applying the aforementioned expansion on the right-hand
side, at leading order in (Xj − X′

j), yields

λ2 > v
†
F(A + N)>X(A + N)vF + O((Xj − X′

j)
2
), (80)

taking into account that the eigenvalues of 3 + 0 and 3 + 0d coin-
cide to leading order in the lossy case (cf. Lemma 7). Given now the
symmetries of A, N, and X, one can expand the result as

λ2 > v
†
F

[

A>XA + 2A>XN + NXN
]

vF + O((Xj − X′
j)

2
). (81)

This concludes the proof. This corollary entails a previous result in
Ref. 42. �

Note that each term of the matrices on the right-hand side of
(74) is symmetric and hence contributes positively, adding to the
lower bound on the algebraic connectivity λ2 of the system. This
implies that resistive networks always require a higher degree of
connectivity to ensure stability.

Corollary 5. A resistive power grid needs to ensure

λ2 >
∑

j

(Xj − X′
j)v

2
Fj





N
∑

k 6=j

E◦
kGj,k





2

, (82)

in the limiting case of no power exchange, to leading order in the
losses.

Proof. If there is a negligible power exchange in the power grid,
all rotor angles δ◦

j , ∀j are identical, such that

cos(δ◦
` − δ◦

j ) = 1, sin(δ◦
` − δ◦

j ) = 0, (83)

for all connections (j, `). This results in Aj,` = 0 and 0d
j,j = 0 in (8),

and Corollary 4 reads

λ2 > v>
F NXNvF, (84)

where all matrices are diagonal matrices. Writing the terms explicitly
yields (82), entailing a lower bound to the connectivity of a power
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grid with resistive elements while considering only leading order of
the losses. �

Before proceeding with the final corollaries, note that despite
the cumbersome matrix notation employed here, one can still
extract very useful information—which can easily be computed
numerically if desired—by utilizing different matrix norms.

Lemma 8. Let Z ∈ C
N×N and W ∈ C

N×N be two matrices, and
let ‖ · ‖n denote an n-induced matrix norm, one has

‖ZW‖n ≤ ‖Z‖n‖W‖n, (85)

i.e., all induced matrix norms are sub-multiplicative.
Furthermore, recall that ‖ · ‖2 denotes the `2-norm for vectors,

also known as spectral norm or Euclidean norm.
Corollary 6. If a positive algebraic connectivity λ2 > 0, and all

nodes j = 1, . . . , N,

(Xj−X′
j)

−1
−

N
∑

`=1

Bj,` >
‖(A+N)‖2‖(A+N)>‖2

λ2
, (86)

where ‖ · ‖2 is the induced `2-norm, then an equilibrium point is
linearly stable to leading order in the losses.

Proof. A positive algebraic connectivity λ2 > 0 implies that
3 + 0d is positive definite on D

(1)
⊥ , and criterion I (a) in Lemma

4 is satisfied.
Consider now criterion I (b) in Lemma 4. Using Geršgorin’s

circle theorem, as in the proof of Corollary 3, one finds that condi-
tion (86) implies that

(X−1 − H) − λ−1
2 ‖(A + N)‖2‖(A + N)>‖21l (87)

is positive definite. Noting that to leading order in the losses, we have

λ−1
2 = ‖(3 + 0)+‖2 = ‖(3 + 0d)

+
‖2; this implies that ∀y ∈ R,

y>(X−1 − H)y

> ‖A + N‖2‖(3 + 0d)
+
‖2‖(A + N)>‖2‖y‖2

≥ ‖(A + N)(3 + 0d)
+
(A + N)>‖2‖y‖2

≥ y>(A + N)(3 + 0d)
+
(A + N)>y. (88)

Hence, matrix H − X−1 + (A + N)(3 + 0d)
+
(A + N)> is negative

definite and criterion I (b) in Lemma 4 is satisfied. The equilibrium
is linearly stable to leading order in the losses. �

Corollary 7. If by criterion II. (a) in Lemma 4 the matrix H

− X−1 is negative definite, and if the algebraic connectivity λ2 satisfies

λ2 > ‖(A + N)>(H − X−1)
−1

(A + N)‖2, (89)

where ‖ · ‖2 is the induced `2-norm, then, to leading order in the
losses, the equilibrium point is linearly stable.

Proof. Assume that H − X−1 is negative definite as given by
criterion II (a) in Lemma 4. The assumption (89) implies that ∀y ∈

D
(1)
⊥ ,

y>(3 + 0d)y ≥ λ2‖y‖2

> ‖(A + N)>(H−X−1)
−1

(A + N)‖2‖y‖2

≥ y>(A + N)>(H−X−1)
−1

(A + N)y, (90)

again noticing that the eigenvalues for (3 + 0d) and (3

+ 0) coincide to leading order. Thus, the matrix (3 + 0d)

+ (A + N)>(H − X−1)
−1

(A + N) is negative definite in D
(1)
⊥ . Crite-

rion II (b) in Lemma 4 is, therefore, satisfied and the equilibrium is
linearly stable to leading order in the losses. �

VI. NUMERICAL ANALYSIS

In this section, we present a numerical analysis of two model
systems to test how tight the bounds given by the above criteria, i.e.,
Corollaries 1– 7 are and ultimately showcase their utility.

First, we consider a system consisting of two machines with
one acting as a generator, producing power (Pm > 0), and the other
acting as a motor, consuming power (Pm < 0).36,65,66 Second, we
consider a system comprised of three motors and three generators,
connected in a ring. The topology and parameters are given in Fig. 1.
While the active power of each node and the admittance of the lines
connecting each node can differ for different nodes, all other param-
eters, e.g., difference in reactance, damping, inertia, relaxation time,
and internal voltages, are set to the same value for each machine. To
check the stability boundary, we vary Pm at all nodes proportionally.
More precisely, we use the base values in Fig. 1 and set Pm

1 = −Pm
2 ,

in the case of the two-machine system, or multiply by Pf, in the case
of the six-machine system, to change both the output of generator

FIG. 1. Topology of the two-machine system and six-machine system that were
used in the numerical study. Synchronous generators and motors are indicated by
green and red color, respectively. The vertex labels show the default active power

at each machine Pm,0
i . When changing the power input/output of each machine,

we will refer to absolute values in the two-machine system, while multiplying each

active power by the factor Pf , i.e., P
m
i = Pf · Pm,0

i , in the six-machine system.
The active power Pm

1 at the slack is chosen to balance the overall power. The
edge labels show the admittance of the lines between the machines with the real
part Gj,` that is associated with losses given by the product of the imaginary part
of the admittance Bj,` and the loss factor lf . The shunt admittance is chosen as
Bi,s = 0.2 for the two-machine system and Bi,s = 0 for the six-machine system.
In both cases, the damping constant D, inertia M, relaxation time T , and internal
voltage Ef are equal for each machine. They are chosen as D = 0.2, M = 1,
T = 2, and Ef = 1.
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nodes and the consumption of consumer nodes, thus increasing the
load of the transmission lines starting from a low grid loading (i.e.,
small Pm

1 = −Pm
2 or Pf).

The first machine is chosen as a slack that is used to balance
the overall active and reactive power in the system. It serves as a
reference node and its stationary phase angle and voltage are set to
δ◦

1 = 0 and E◦
1 = 1, respectively. A more detailed description of how

the slack is used to cover the losses and how we implemented it is
given in the Appendix.

Evaluating whether the corollaries agree with the linear stability
analysis necessitates solving for fixed points (δ◦, ω◦, E◦) given by (5).
Specifically, we are looking for solutions that have a vanishing angu-
lar frequency ω◦

j = 0 ∀ j, since they correspond to solutions with the
system operating at the desired reference frequency. While there are
multiple possible solutions of (5) that carry no physical meaning,
e.g., those having a negative voltages, we focus on one stable solution
with physical meaning.

In order to find a stable state of the system, we employ a double-
checking procedure. First, we solve (5) and find a fixed point using
a root solver provided by Python’s SciPy package67 using the solu-
tion of the linearized equations as an initial guess. Subsequently, we
perform the two-step procedure:

1. We perform a first check of the stability of the fixed point by
evaluating the eigenvalue spectrum of the associated Jacobian
given in (10).

2. We perform a second check of the stability of the fixed point by
perturbing the fixed point by a small random disturbance and
numerically solving the full equations in time domain using an
appropriate fifth-order adaptive numerical solver.68

If the fixed point found in step (1) is not linearly stable, we slightly
perturb the system in step (2) forcing it to relax to a new fixed
point, which we take as the final stable fixed point. This double-
checking procedure, in contrast with merely employing the root-
finding algorithm, ensures the fixed point that is found is stable.
The subsequent analysis requires to vary the system’s parameters.
To ensure the system remains in a stable fixed point, we change the
system’s parameters in small steps (adiabatically). For sufficiently
small steps, the fixed point changes only slightly and, given the
system remains stable, a new fixed point can most likely be found
by the root-solving algorithm when initializing the search with the
previously obtained fixed point.

Having detailed the numerical procedure, we test the useful-
ness of the corollaries for both a lossless setting (Gj,` = 0) as well
as for increasing losses. More precisely, we assume a fixed ratio of
conductances and admittances, Gj,` = −lfBj,`, for all lines (j, `), with
lf being the loss factor. By increasing the loss factor lf, thus increas-
ing the resistive losses, we investigate how the bounds of stability are
impacted by losses and how they compare to the numerical results,
keeping in mind that the corollaries are only correct up to leading
order when considering losses. For both instances, we scan over a
range of different active power levels, Pm

1 or Pf, and differences in
reactance 1X = Xj − X′

j = X − X′, to find sets of parameters where
a stable fixed point exists.

Firstly, an examination of the pure instabilities is put forward,
and secondly, the mixed instability corollaries are tested.

To distinguish between different instabilities, the eigenvalues
and the eigenvectors of the associated Jacobian in (10) are exam-
ined for each system in a lossless and lossy setting. As a fixed
point becomes unstable, one or multiple eigenvalues pass the imag-
inary axis. The corresponding eigenvectors indicate which kind of
instability is present and which corollary to compare to.

A. Lossless case

In the lossless case (Gj,` = 0), the equations of motion are
considerably simplified. While different fixed points, stable and
unstable, can be found, we focus on fixed points that are stable by
using the aforementioned iterative procedure. In the two-machine
system, the active power injected by one machine is given by Pm

1 and
the power extracted by the other machine is Pm

2 = −Pm
1 . In the six-

machine system, the default power injection presented in Fig. 1 was
multiplied by the factor Pf, thus proportionally increasing the power
extracted or injected at each node.

For both systems, we calculated the parameter regions where
stable physically meaningful fixed points could be found using the
first machine as the slack (see the Appendix for more details). By
analyzing the dominant eigenvalue µ2 of the eigenvalue spectrum
of the Jacobian J, we determined where the fixed points are stable
or unstable within the parameter region. By simultaneously examin-
ing the eigenvectors corresponding to the leading eigenvalue at the
bifurcation point, the precise type of instability was identified. In
the subsequent analysis, we will refer to the angle different between
machines by the shorthand δi,j = δi − δj.

FIG. 2. Route to a pure angle instability with a difference in transient and static
reactance 1X = 0 for the two-machine (left column) and six-machine system
(right column). The rows show, from top to bottom, the stationary phase angle
difference |δi,1|, the real part of the dominant eigenvalue<(µ2), and the left-hand
side (LHS) of Corollary 3. The stable fixed point is lost at Pm

1 = −Pm
2 = 1 and

Pf = 5.96 for the two- and six-machine systems, respectively. These bifurcation
points are almost perfectly predicted by Corollary 3.
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1. Pure instability

A pure rotor angle instability could be observed for both sys-
tems by setting the difference of static and transient reactance to
1X = 0, thus isolating the rotor angle subsystem. The instability
arises after increasing the level of power injection/extraction beyond
Pm

1 = −Pm
2 = 1 and Pf ≈ 5.96 for the two-machine and the six-

machine system, respectively (see Fig. 2). Corollary 3 predicts the
point where the maximal phase angle difference δi,j of the machines
connected by a line was equal to π/2 for the two- and six-machine
systems. This coincides with the point where the stability of the fixed
point is lost for the two-machine system, while it is slightly below
the transition for the six-machine system. This shows the efficacy
of Corollary 3, as it is tight in simple systems and remains near the
transition point for more complex systems.

2. Mixed instability

We now turn to the emergence of mixed instabilities which are
captured by Corollaries 4, 6, and 7. To best showcase the usefulness
of the corollaries, we focus on the difference of the left-hand side
(LHS) and the right-hand side (RHS) in each corollary, respectively.

Firstly, we examine Corollary 4 by varying the power and
comparing the eigenvalue λ2 of the reduced Laplacian with the right-
hand side of the corollary, for different values of the difference in
reactance 1X. The results are shown in Fig. 3. Corollary 4 seems
to be tight in both the two-machine and six-machine systems as
the stability boundary coincides with the point where λ2 and RHS
are closest. Notably, we found that Corollary 4 also gives reasonable
results for larger 1X. Even while a finite gap between λ2 and the

FIG. 3. Evaluation of Corollary 4 for 1X = 0.2 (solid lines) and 1X = 0.5
(dashed lines) for increasing loading of the system. The system loses stability
when the dominant eigenvalue µ2 crosses the imaginary axis, which is indicated
by the red vertical lines. The values close to the transition points are highlighted
with crosses for both λ2 and the right-hand side RHS of the corollary. At this point,
the dominant eigenvalues of the reduced Laplacian λ2 and the right-hand side are
closest to each other, highlighting the usefulness of Corollary 4.

RHS remains, the gradient of the difference could serve as an early
warning signal for reaching the bifurcation point.

Secondly, we evaluate Corollaries 6 and 7 and show the results
in Fig. 4. In the white regions, no stable fixed point can be found.
Therein, we have LHS−RHS< 0 for both corollaries, i.e., the corol-
laries are not satisfied. The gray hatched region shows the case where
LHS−RHS< 0, i.e., the corollaries are not satisfied, but there is a
stable fixed point. Given these corollaries are sufficient criteria for
stability, this distinction is to be expected: the failure to satisfy the
corollaries is not an indication of instability; it is simply an indica-
tion that no assertions on the stability of the system can be made
on the basis of these corollaries. Nevertheless, we note that Corollar-
ies 6 and 7 are very tight for the two-machine system, proving their
efficacy in determining stability. They also adequately reproduce
the qualitative shape of the stability boundary for the six-machine

FIG. 4. Comparison of the numerically determined stability boundaries and the
sufficient criteria given by Corollaries 6 and 7. The red dashed lines show the
boundaries of the parameter regions for which a stable fixed point exists according
to the dominant eigenvalue of the Jacobian µ2 in both the two- and six-ma-
chine systems (cf. Fig. 1). The colormap shows the logarithm of left-hand side
(LHS) minus right-hand side (RHS) of the corollaries corresponding to mixed
instabilities for two machines (left column) and six machines (right column), as a
function of power injection/extraction and difference in reactance. Note that only
values are shown that are positive and thus the logarithm used for the color scale
gives a real value. In the white region, no stable fixed points exist. Correspond-
ingly, the sufficient criteria are not satisfied (LHS−RHS< 0). In the colored area
LHS−RHS> 0 such that a stable fixed point exists according to the Corollaries
6 and 7. While the sufficient criteria are not satisfied (LHS−RHS< 0) in the gray
hatched area, a stable fixed point still exists in this area.
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system. For 1X 6= 0, only mixed instabilities could be observed for
both systems.

B. Lossy case

So far, we considered solely lossless systems. We showed that
the related corollaries for pure instabilities are tight and that Corol-
laries 4, 6, and 7 adequately describe the stability boundary (perfectly
in the case of two machines). We now turn to the more interest-
ing case where losses are included. Again, the two- and six-machine
systems were considered.

Before checking the corollaries and how the results obtained
by the perturbation ansatz (34) compared to numerical results, we
have to find the correct fixed point. Power losses on the transmission
lines are not known a priori before the fixed point is determined.
Hence, we use the slack node j = 1 to ensure that the power is
balanced assuming that it includes an appropriate control system.
Technically, we suspend the power balance equation and the voltage
equation in (5) and set δ◦

1 = 0 and E◦
1 = 1 during the root-solving

procedure. Afterward, we set Pm
1 and E

f
1 to satisfy (5).

If losses were considered, only mixed instability could be
observed. Therefore, the corollaries corresponding to mixed insta-
bilities were evaluated and are shown in Figs. 5 and 6.

Firstly, we examine the usefulness of Corollary 4 in Fig. 5. We
again observe that the point where stability is lost coincides with
the point where the eigenvalue λ2 and the right-hand side of the
corollary are closest. Note that it becomes numerically hard to deter-
mine the exact point where <(µ2) = 0 for the case with high losses
and small 1X. Nevertheless, the corollary works well at intermediate
values for 1X, although having been designed up to leading order in

FIG. 5. Evaluation of Corollary 4 for different 1X and loss factors. The point
where stability is lost is indicated by the horizontal red lines. The loss factors were
chosen as lf = 0.1 and lf = 0.2 in the top and bottom row, respectively. The solid
lines show the results for 1X = 0.2, whereas the dashed lines show the results
for 1X = 0.5. While it is numerically challenging to determine the point where
stability is lost (i.e., µ2 = 0) for low 1X and non-zero loss factors lf , Corollary
4 adequately predicts the bifurcations points for the considered systems, 1X
and lf .

1X, serving well at these ranges as an early warning for imminent
instability.

Secondly, we examine Corollaries 6 and 7 and show the related
results in Fig. 6. The colored areas show the region where Corol-
laries 6 and 7 are satisfied. These do not fully cover the parameter
region with a linearly stable fixed point as the loss factor lf increases.
Additionally, the approximation 1X ≈ 0 used to find the Fiedler
vector in Corollary 7 limits the range of 1X where the corollaries
are insightful in the sense of overlapping with the area of a stable
fixed point given by the dominant eigenvalues. Overall, the sufficient
stability conditions remain correct for all values of lf although they
were derived solely to leading order in the losses. That is, at every
point in parameter space where 6 and 7 imply the fixed point is sta-
ble agrees with the real part of the dominant non-zero eigenvalue of
the corresponding Jacobian being smaller than zero.

In conclusion, the developed corollaries can be used to effi-
ciently judge whether a system’s fixed point is stable without the
need to calculate the full Jacobian or run simulations. This is espe-
cially useful to system operators that need to check the stability of
different grid situations, since they can use the corollaries to focus
on the cases where the corollaries do not indicate a stable fixed
point, potentially cutting down on the amount of costly (numerical)
simulations of the full dynamics.

FIG. 6. Corollaries for mixed instabilities for different levels of losses in the
two-machine (left column) and six-machine systems (right column). Different col-
ors indicate different loss factors lf according to the legend below the plot. Dashed
lines show where the dominant non-zero eigenvalue µ2 crossed the imaginary
axis and the system becomes unstable. The white regions indicate the parameter
region where no physically meaningful stable fixed point exists. Increasing losses
by choosing a larger loss factor lf decreases the size of the parameter region
where a stable fixed point can be found.

Chaos 32, 053117 (2022); doi: 10.1063/5.0082712 32, 053117-14

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

VII. CONCLUSION

The third-order model describes the dynamics of synchronous
machines and takes into account both the rotor angle and the volt-
age dynamics. Analytical results for the dynamics and the stability of
coupled machines in power grids with complex topologies are rare,
in particular, if Ohmic losses are taken into account. In this article,
a comprehensive linear stability analysis was carried out and several
explicit stability criteria were derived.

The first main result of this works depicts the influence of
resistive terms of the system after linear stability analysis. Remark-
ably, these terms enter into the reduced system Jacobian only via
the two diagonal matrices 0d and N, as shown in (28) up to lead-
ing order in the losses. As a second main result, a decomposition
of the Jacobian into the rotor angle and the voltage subsystems is
derived in Lemma 4, where losses are incorporated up to linear order
via perturbation theory. This decomposition reveals clearly how the
interplay of both subsystems can lead to mixed forms of instability
and thus requires additional security margins.

Based on this decomposition, several explicit stability condi-
tions were derived, both for the isolated subsystems as well as for
the full systems, including rotor angle and voltage dynamics. In
particular, one can show that the stability of the voltage system is
not affected directly by resistive terms up to leading order in the
losses, thus implying that studies on the stability of the voltage sys-
tem withstand in the purely lossless case. Furthermore, Corollaries
4 and 5 entail a strict minimum connectivity of the power grid net-
work solely by the presence of resistive terms, i.e., a lower bound to
possible dynamics on the system given the presence of losses in the
system.

The analytical insights unveiled here—especially the mathe-
matical evaluation of lossy systems—can prove relevant to further
understand power grids of all spatial scales and of general graph
constructions. Notably, we have shown how the derived stability cri-
teria are modified to linear order in the presence of Ohmic losses.
This approach is particularly useful in the qualitative analysis of the
stability phase diagrams and the bifurcations: Do losses lead to an
increase or decrease of stable parameter regions?

In the future, our analysis may contribute to the derivation
of rigorous quantitative stability conditions for lossy power grids.
Moreover, it opens the door to further research on higher-order
models from a mathematical point-of-view and can, henceforth, be
applied more generally to other power grid models.
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APPENDIX: EXISTENCE OF SOLUTIONS FOR TWO

MACHINES

In this Appendix, we provide more details on the existence of
fixed points for the two-machine system, i.e., the solution of the alge-

braic (5) for N = 2. In particular, we discuss how the choice of E
f
j

affects the stability of the system.
So assume that machine 1 acts as an effective generator (Pm

1

> 0) and machine 2 acts as an effective motor (Pm
2 < 0). We use Pm

2

as an external parameter to vary the loading of the grid. The gener-
ator has to cover the load of the motor as well as the losses, hence
we cannot fix Pm

1 beforehand. Instead, it is assumed that Pm
1 is set

by a control system to guarantee a balanced system, � = 0. From a
computational viewpoint, node 1 is treated as a slack and the power
injection is computed as a function of the free system variables via

Pm
1 = G1,1E

◦2
1 + E◦

1E
◦
2

[

B1,2 sin(δ◦
1,2) + G1,2 cos(δ◦

1,2)
]

, (A1)

using the abbreviation δ◦
1,2 = δ◦

1 − δ◦
2 . We further assume that

the remaining machine parameters are equal, X1 − X′
1 = X2 − X′

2

= 1X, B1,1 = B2,2, G1,1 = G2,2, B1,2 = B2,1, and G1,2 = G2,1. We now
distinguish three cases with respect to the choice of the field flux Ef.

(a) We first consider the case that both machines are equipped
with a control system that sets the actual voltages at a predefined set
value, which we set to unity in appropriate units, i.e., E◦

1 = E◦
2 = 1.

To achieve this, the field fluxes have to be set to

E
f
1 = 1 − 1X

[

B1,1 + B1,2 cos(δ◦
1,2) − G1,2 sin(δ◦

1,2)
]

(A2)

E
f
2 = 1 − 1X

[

B2,2 + B1,2 cos(δ◦
2,1) − G1,2 sin(δ◦

2,1)
]

. (A3)

The only remaining unknown state variable is the phase difference
δ◦

21 = δ◦
2 − δ◦

1 = −δ◦
12 between the two nodes, which is obtained

from the power balance equation,

Pm
2 = G2,2 + B1,2 sin(δ◦

2,1) + G1,2 cos(δ◦
21)

= G2,2 + |Y1,2| sin(δ◦
2,1 − γ1,2), (A4)

where we have defined |Y1,2| =
√

B2
1,2 + G2

1,2 and

B1,2 = |Y1,2| cos(γ1,2), and G1,2 = −|Y1,2| sin(γ1,2). (A5)

Solving the power imbalance then yields

δ◦
2,1 = γ1,2 + arcsin

(
Pm

2 − G2,2

|Y1,2|

)

(A6)
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or

δ◦
2,1 = γ1,2 − arcsin

(
Pm

2 − G2,2

|Y1,2|

)

+ π . (A7)

We thus obtain two fixed points if

|Pm
2 − G2,2| ≤ |Y1,2|, (A8)

which coalesce in case of equality. The dynamical stability of these
two solutions is then checked by computing the eigenvalues of the
Jacobian. If the condition (A8) is not satisfied, no fixed point exists.

(b) Second, we may assume that only the generator or slack
node is equipped with a control system which fixes E◦

1 = 1, whereas

E◦
2 is a state variable that is yet to be determined. The field flux E

f
1 is

still given by

E
f
1 = 1 − 1X

[

B1,1 + E◦
2(B1,2 cos(δ◦

1,2) − G1,2 sin(δ◦
1,2))

]

, (A9)

while E
f
2 is a fixed machine parameter. The power balance equation

at node 2 yields δ◦
1,2 in terms of E◦

2

sin(δ◦
2,1 − γ1,2) =

Pm
2 − G2,2E

◦2
2

|Y1,2|E
◦
2

. (A10)

Now we can use (5) to obtain E◦
2. We have

0 = E
f
2 − E◦

2 + 1XB2,2E
◦
2 + 1X|Y1,2| cos(δ◦

2,1 − γ1,2). (A11)

Squaring this equation and using cos2 = 1 − sin2 then yields
[

(1 − 1XB2,2)E
◦
2 − E

f
2

]2

E◦2
2

= 1X2|Y1,2|E
◦2
2 − 1X2

[

Pm
2 − G2,2E

◦2
2

]2
. (A12)

This is a fourth-order polynomial in E◦
2 , which can be solved in a

straightforward way. The exact solutions are quite lengthy and are
not given here. However, we remark that one can obtain conditions
for the existence of physical solution, i.e., solutions where E◦

2 is real
and non-negative. We can then check the dynamical stability of the
physical solutions by computing the eigenvalues of the Jacobian.

(c) Finally, we are left with the case where no machine has a

control system. That is, both E
f
1 and E

f
2 are fixed system parameters

and E◦
1 and E◦

2 are free system parameters that are yet to be deter-
mined. In the general case, we cannot obtain an analytical solution
and thus have to resort to numerical computations.

In the case of a lossless line and identical machines (E
f
1 = E

f
2

= Ef), however, we can obtain such a solution. The fixed point (5)
now yield

0 = Ef − E◦
2 + 1XB1,1E

◦
2 + 1XB1,2E

◦
1 cos(δ◦

2,1), (A13)

0 = Ef − E◦
1 + 1XB1,1E

◦
1 + 1XB1,2E

◦
2 cos(δ◦

2,1). (A14)

Multiplying the equations with E◦
1 and E◦

2 , respectively, and subtract-
ing the resulting equations yields

0 = Ef(E◦
2 − E◦

1) − (1 − 1XB1,1)(E
◦2
2 − E◦2

1 ) (A15)

= (E◦
2 − E◦

1)
[

Ef − (1 − 1XB1,1)(E
◦
2 + E◦

1)
]

. (A16)

This condition requires that one of the brackets vanishes. One can
show that the expression in the square bracket is always non-zero,

FIG. 7. Stability map of a lossless system with two machines and different slack
implementations. The figure shows the existence of a fixed point and the dominant
eigenvalue <(µ2) as a function of the grid load Pm

1 = −Pm
2 and the machine

parameter 1X . The three panels show three different scenarios for the control
of the field fluxes Ef

j . (a) Both machines have a control system that adapts Ef
1

and Ef
2 such that the voltages assume a predefined value which is set to unity,

E◦
1 = E◦

2 = 1. (b) Only the effective generator or slack node has a control system

fixing E◦
1 = 1 while the other node has a fixed Ef

2 = 1. (c) Both machines have

a fixed value for the field flux Ef
1 = Ef

2 = 1. The regions of stability are visible
different for different definitions of a slack and/or control system. The dashed
black line indicates where the dominant eigenvalue crosses the imaginary axis
and the considered fixed point becomes unstable. No fixed points exist in the
white regions.

hence the only possible solution is given by E◦
2 = E◦

1. The remaining
equations to solve are then given by

Pm
2 = B1,2E

◦2
1 sin(δ◦

2,1), (A17)

E◦
1(1 − 1XB1,1) = Ef + 1XB1,2E

◦
1 cos(δ◦

2,1). (A18)

Using the first equation to eliminate the cosine from the second
equation yields

[

E◦
1(1 − 1XB1,1) − Ef

]2
E◦2

1 = 1X2B2
1,2E

◦4
1 − 1X2(Pm

2 )2.

This is again a fourth-order polynomial in E◦
1, which can be solved

in a straightforward way.
A stability map for the three different cases is provided in Fig. 7.

Stability properties are similar for small values of 1X but differ sig-
nificantly for larger values. In the main body of the manuscript, we
focus on the case (b) to test the significance and tightness of the
derived stability conditions.
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