001     907682
005     20220512185434.0
024 7 _ |a 10.1055/s-0042-1746120
|2 doi
037 _ _ |a FZJ-2022-02155
100 1 _ |a Gutsche, R.
|0 P:(DE-Juel1)181076
|b 0
|u fzj
111 2 _ |a 60. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin
|c Leipzig
|d 2022-04-27 - 2022-04-30
|w Germany
245 _ _ |a Multimodal PET/MRI radiomics and clinical parameters for overall survival prediction in patients with IDH wildtype glioblastoma
260 _ _ |c 2022
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1652361894_31067
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Ziel/Aim Currently, most radiomics studies on survival prediction in brain tumor patients are based on MRI only. The goal of our study was to evaluate multimodal radiomics derived from amino acid PET and MRI and clinical parameters for survival prediction in patients with newly diagnosed IDH wildtype glioblastoma.Methodik/Methods Sixty-three patients with newly diagnosed IDH wildtype glioblastoma were evaluated retrospectively. At initial diagnosis, all patients underwent structural MRI and O-(2-[F-18]fluoroethyl)-L-tyrosine (FET) PET. Tumor volumes were automatically segmented using a deep learning-based tool followed by visual inspection. Predefined and deep radiomics features were extracted from both imaging modalities. Feature repeatability analyses and feature selection were performed to avoid overfitting. Cox regression models for overall survival were built from clinical parameters such as age or the extent of resection, radiomics features, and combinations thereof, and finally validated using 5-fold cross-validation.Ergebnisse/Results The median overall survival was 12 months (range, 0–64 months). Higher age and larger FET PET tumor volumes were significantly correlated with shorter overall survival (age, r=−0.39, p<0.001; volume, r=−0.31, p<0.05). Models solely based on predefined FET PET or MRI radiomics features showed a similar mean concordance index (C-index) as the model based on clinical parameters (C-indices, 0.68±0.04; 0.64±0.03; and 0.69±0.08, respectively). Multimodal radiomics based on predefined and deep features yielded improved C-indices of 0.75±0.06 and 0.72±0.09, respectively. A model based on multimodal radiomics and clinical parameters achieved the best prognostic performance (C-index, 0.80±0.04).Schlussfolgerungen/Conclusions Our results suggest an added clinical value of multimodal FET PET/MRI radiomics with clinical parameters for the non-invasive survival prediction in patients with IDH wildtype glioblastoma.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Bauer, E. K.
|0 P:(DE-Juel1)159312
|b 1
|u fzj
700 1 _ |a Kocher, M.
|0 P:(DE-Juel1)173675
|b 2
|u fzj
700 1 _ |a Werner, J. M.
|b 3
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 4
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 5
|u fzj
700 1 _ |a Langen, K. J.
|0 P:(DE-Juel1)131777
|b 6
|u fzj
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 7
|u fzj
700 1 _ |a Lohmann, P.
|0 P:(DE-Juel1)145110
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.1055/s-0042-1746120
909 C O |o oai:juser.fz-juelich.de:907682
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159312
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145110
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-JCNS-TA-20110113
|k PGI-JCNS-TA
|l PGI Technische und administrative Infrastruktur
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 3
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 4
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)PGI-JCNS-TA-20110113
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21