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Methods for analysis of electrophysiological data
- Spike trains

- Statistics of spike trains
- Rate estimation
- Spike interval statistics
- Statistics across spike trains

- Correlative measures on spike trains
- Spike train correlation
- Spike train dissimilarity
- Spike train synchrony

- Detection of spike patterns
- Cell assembly detection (CAD)
- Unitary Event analysis (UE)
- Analysis of sequences of synchronous events (ASSET)
- Spike pattern detection and evaluation (SPADE)
- Cumulant based inference of higher-order correlations (CUBIC)

- Detection of non-stationary processes
- Gaussian Process Factor Analysis (GPFA)



a.stella@fz-juelich.de

Methods for analysis of electrophysiological data
- Spike trains

- Spike train surrogates
- Spike train generation

- LFP and population signals
- Signal processing
- Spectral analysis
- Causality measures
- Current source density analysis

- LFP and spike trains
- Spike-triggered average
- Spike triggered LFP phase

- Kernels
- Waveforms
- Alternative data representations
- Utility functions
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Intro - The stochastic nature of spiking

▪ Spike train responses (to repetition of the same 
stimulus) often highly variable with respect to

• Spike times
• Spike count in [0, T]

→ may be reflected by
• Noise, varying initial conditions, varying 

stimuli

▪ Intervals between consecutive spikes of one 
neuron (inter-event intervals or inter spike 
intervals) are highly variable

→ spike train irregularity

Mochizuki et al. 2016
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Intro - Variability of neural data

▪ Data have complex features, analytical description 
not possible 

▪ Firing rates change in time (non-stationarity), in 
various ways 

▪ Firing rates change across trials (inhomogeneity) 

▪ Spike trains deviate from Poisson (bursty or regular; 
serial correlation) 

▪ Firing onset or offset vary across trials (latency 
variability)

→ Modeling spike trains through Point processes is a hard 
problem

→ Analyzing highly variable data is too

Mochizuki et al. 2016
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Intro - Variability of neural data
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Intro - Neural coding

There are many different neural coding hypotheses:
▪ Rate coding
▪ Temporal coding
▪ Population coding

But also:
▪ Sparse coding
▪ Dense coding
▪ Phase coding
▪ etc..
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Intro - Neural coding

There are many different neural coding hypotheses:
▪ Rate coding
▪ Temporal coding
▪ Population coding

But also:
▪ Sparse coding
▪ Dense coding
▪ Phase coding
▪ etc..

Dayan and Abbott (2005), reprinted from Georgopoulos et al. (1984)
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Intro - Neural coding

There are many different neural coding hypotheses:
▪ Rate coding
▪ Temporal coding
▪ Population coding

But also:
▪ Sparse coding
▪ Dense coding
▪ Phase coding
▪ etc..

Adapted from Prut et al. 1998, J. Neurophys
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Intro - Neural coding

There are many different neural coding hypotheses:
▪ Rate coding
▪ Temporal coding
▪ Population coding

But also:
▪ Sparse coding
▪ Dense coding
▪ Phase coding
▪ etc..

Adapted from Yu et al. 2008, NIPS conference
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Spike-time correlation detection methods 
for parallel spike train data

Unitary events analysis 
Spatio-temporal PAttern Detection and Evaluation (SPADE)
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Spike time correlation detection methods for parallel spike 
train data

CAD
Complexity

NeuroXidence SCCFNAD

CCH

CLIQUES
Seq MNF

SPADE
SPOTDisCLUST

UE

PP Seq

Bayesian Methods ASSET

Spike Order
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Spike time correlation detection in parallel spike trains

Challenges:
1. Building on pairwise correlation analysis may miss higher-order correlations

a. HOC analysis, e,g, for Synchronous or Spatio-Temporal spike Patterns (STPs)
2. Large number of neurons (100 or more)

a. Combinatorial explosion of patterns for N neurons
b. Massive multiple statistical testing problem

3. Development of methods
a. Detection of STPs
b. Significance of STP beyond chance based on firing rates
c. Can cope with non-stationary data

Gruen, Rotter (2010), Springer
Torre et al. (2013) Front Comput Neurosci

Stella, Quaglio et al. (2019) Biosystems
Stella, Bouss et al., (2021) biorxiv, Accepted
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Spike time correlation detection in parallel spike trains

Adapted from Riehle et al. 1997, Science
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Unitary events analysis

Unitary events (UEs) analysis is a statistical method detecting patterns of 
synchronous spiking activity among simultaneously recorded spike trains. 
It captures:
▪ Synchronous spiking activity over time across neurons
▪ With high temporal precision
▪ Evaluates the probability of such events, given a null-hypothesis of spike train 

independence given the firing rate modulations

Refs UE: Gruen et al. 2002a; Gruen et al. 2002b; 
Riehle et al. 1997; Gruen and Rotter, 2010
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Unitary events analysis

Adapted from Riehle et al. 1997, Science
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Spike time correlation detection in parallel spike trains

Adapted from Prut et al. 1998, J. Neurophys
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SPADE
SPADE detects spatio-temporal spike 
patterns in parallel spike trains.

It combines
▪ An optimized pattern mining 

algorithm
together with
▪ Robust statistical testing 

(surrogate generation)

Adapted from Stella et al. 2019, Biosystems
Refs: SPADE (Torre et al. 2013; Quaglio et al. 2017; 

Stella et al.. 2019; Stella et al. 2021)
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SPADE

Adapted from Stella et al. 2022, biorxiv, Accepted

SPADE detects spatio-temporal spike 
patterns in parallel spike trains.

It combines
▪ An optimized pattern mining 

algorithm
together with
▪ Robust statistical testing 

(surrogate generation)
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SPADE

Stella, Bouss, Palm, Riehle, Brochier, 
Gruen (2022), in prep.

Kleinjohann et al. (2022), in prep.
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Dimensionality reduction methods for 
parallel spike trains

Gaussian Process Factor Analysis (GPFA)
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Dimensionality reduction methods for parallel spike trains

Adapted from Cunningham and Yu. 2014, Nat. Review

PCA TCA

FA GPFA

LFADS

LDS
ISOMAP

CCA LLE

dPCA

ICA
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Dimensionality reduction methods for parallel spike trains

Adapted from Cunningham and Yu. 2014, Nat. Review
Byron Yu lectures at Champalimaud summer school 2017, Lisbon

For more ref to: https://www.youtube.com/watch?v=KaTnWP1SVpk&ab_channel=FENS

Reasons to use dimensionality reduction methods:
1. Single trial analyses of neural population activity
2. Hypotheses about population activity structure
3. Exploratory analyses of large datasets

https://www.youtube.com/watch?v=KaTnWP1SVpk&ab_channel=FENS
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GPFA
Gaussian Process Factor Analysis (GPFA) is a 
dimensionality reduction technique for parallel spike 
train data.
→ Particularly indicated for single-trial population 
activity 
→ GPFA captures shared variance in data and 
incorporates it in time-varying latent variables

Adapted from Yu et al. 2019, J Neurophys
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Exercises
Over these 1.5hrs, you will be presented with two jupyter notebooks:
▪ UE and SPADE
▪ GPFA

You can divide in groups and concentrate in either one of the two notebooks.
In the last minutes, we’ll go through the results and comment them.
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Elephant team & INM-6 

Around 45 contributors from 13 institutions!
https://elephant.readthedocs.io/en/latest/index.html

https://elephant.readthedocs.io/en/latest/index.html


www.humanbrainproject.eu www.ebrains.eu

Thank you!
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