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Methods for analysis of electrophysiological data

- Spike trains
- Statistics of spike trains
- Rate estimation
- Spike interval statistics
- Statistics across spike trains
- Correlative measures on spike trains
- Spike train correlation
- Spike train dissimilarity
- Spike train synchrony
- Detection of spike patterns
- Cell assembly detection (CAD)
Unitary Event analysis (UE) < —
Analysis of sequences of synchronous events (ASSET)
Spike pattern detection and evaluation (SPADE) < ——
Cumulant based inference of higher-order correlations (CUBIC)
- Detection of non-stationary processes
- Gaussian Process Factor Analysis (GPFA) 4——

ELECTROPHYSIOLOGY ANALYSIS TOOLKIT

o . . Co-funded b
ﬁ: Human Brain Project \ EBRAINS 5z UL

the European Union



Methods for analysis of electrophysiological data

Spike trains
- Spike train surrogates
- Spike train generation
- LFP and population signals
- Signal processing
- Spectral analysis
- Causality measures ELECTROPHYSIOLOGY ANALYSIS TOOLKIT
- Current source density analysis
- LFP and spike trains
- Spike-triggered average
- Spike triggered LFP phase
- Kernels
- Waveforms
- Alternative data representations

- Utility functions
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Intro - The stochastic nature of spiking

Firing regularity
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Spike train responses (to repetition of the same
stimulus) often highly variable with respect to

*  Spike times
*  Spike countin [0, T]
— may be reflected by
e Noise, varying initial conditions, varying
stimuli

Intervals between consecutive spikes of one
neuron (inter-event intervals or inter spike
intervals) are highly variable

— spike train irregularity
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Intro - Variability of neural data
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= Data have complex features, analytical description
not possible

= Firing rates change in time (non-stationarity), in
various ways

= Firing rates change across trials (inhomogeneity)

= Spike trains deviate from Poisson (bursty or regular;
serial correlation)

= Firing onset or offset vary across trials (latency
variability)

— Modeling spike trains through Point processes is a hard
problem

— Analyzing highly variable data is too
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Intro - Neural coding

There are many different neural coding hypotheses:
= Rate coding
= Temporal coding
= Population coding
But also:
= Sparse coding
= Dense coding
= Phase coding
= etc..
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Intro - Neural coding

There are many different neural coding hypotheses:
= Rate coding
= Temporal coding
= Population coding
But also:
= Sparse coding
= Dense coding
= Phase coding
= etc..

PCA110.S01 S1A

Dayan and Abbott (2005), reprinted from Georgopoulos et al. (1984)

. ) AN\ Co-funded b,
@f Human Brain Project 2\ EBRAINS the Europear): Union



Intro - Neural coding

There are many different neural coding hypotheses:

= Rate coding A

= Temporal coding 327%(374%)  _ (5,2,6;31,52)

= Population coding 61 - e
But also: —

- Sparse coding 2|

= Dense coding —

» Phase coding o R R oS

= etc.. -100 0 (35 trig.) 150ms

Adapted from Prut et al. 1998, J. Neurophys
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Intro - Neural coding

There are many different neural coding hypotheses:

- Rate coding i o s
= Temporal coding g o o )
= Population coding | ‘
But also: JAA .
= Sparse coding \\ "
= Dense coding | AT
- Phase coding Tl
- etc.. °"'\ o -

Tt

Adapted from Yu et al. 2008, NIPS conference
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Spike-time correlation detection methods
for parallel spike train data

Unitary events analysis
Spatio-temporal PAttern Detection and Evaluation (SPADE)
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Spike time correlation detection in parallel spike trains

Challenges:
1. Building on pairwise correlation analysis may miss higher-order correlations

a. HOC analysis, e,g, for Synchronous or Spatio-Temporal spike Patterns (STPs)

2. Large number of neurons (100 or more)
a. Combinatorial explosion of patterns for N neurons
b. Massive multiple statistical testing problem

3. Development of methods

a. Detection of STPs
b. Significance of STP beyond chance based on firing rates

c. Can cope with non-stationary data

Gruen, Rotter (2010), Springer

Torre et al. (2013) Front Comput Neurosci
Stella, Quaglio et al. (2019) Biosystems
Stella, Bouss et al., (2021) biorxiv, Accepted
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Spike time correlation detection in parallel spike trains

F Unitary Events
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Adapted from Riehle et al. 1997, Science
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Unitary events analysis

Unitary events (UEs) analysis is a statistical method detecting patterns of
synchronous spiking activity among simultaneously recorded spike trains.

It captures:
= Synchronous spiking activity over time across neurons
= With high temporal precision
= Evaluates the probability of such events, given a null-hypothesis of spike train
independence given the firing rate modulations

Refs UE: Gruen et al. 2002a; Gruen et al. 2002b;
Riehle et al. 1997; Gruen and Rotter, 2010
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Unitary events analysis

Spike Events
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Spike time correlation detection in parallel spike trains
[z

il 10
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Time

Adapted from Prut et al. 1998, J. Neurophys
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SPADE

. . Spike trains
SPADE detects spatio-temporal spike |
patterns in parallel spike trains. ' ! juN' H'E & L L L
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Adapted from Stella et al. 2019, Biosystems
Refs: SPADE (Torre et al. 2013; Quaglio et al. 2017;
Stella et al.. 2019; Stella et al. 2021)
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SPADE

SPADE detects spatio-temporal spike
patterns in parallel spike trains.

It combines

= An optimized pattern mining
algorithm

together with

= Robust statistical testing
(surrogate generation)

@ Human Brain Project \ EBRAINS
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Dimensionality reduction methods for
parallel spike trains

Gaussian Process Factor Analysis (GPFA)
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Dimensionality reduction methods for parallel spike trains
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Adapted from Cunningham and Yu. 2014, Nat. Review
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Dimensionality reduction methods for parallel spike trains

%

a Trial 1 <«— Trials —> Trial T b Peristimulus time histograms
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Reasons to use dimensionality reduction methods:
1. Single trial analyses of neural population activity
2. Hypotheses about population activity structure
3. Exploratory analyses of large datasets
Adapted from Cunningham and Yu. 2014, Nat. Review

Byron Yu lectures at Champalimaud summer school 2017, Lisbon
For more ref to: https://www.youtube.com/watch?v=KaTnWP1SVpk&ab_channel=FENS
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Gaussian Process Factor Analysis (GPFA) is a N
dimensionality reduction technique for parallel spike iy
train data.
— Particularly indicated for single-trial population 1 e
activity MRS =
— GPFA captures shared variance in data and V.
incorporates it in time-varying latent variables :
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Exercises

Over these 1.5hrs, you will be presented with two jupyter notebooks:

= UE and SPADE
= GPFA

You can divide in groups and concentrate in either one of the two notebooks.
In the last minutes, we’ll go through the results and comment them.
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Elephant team & INM-6

ELECTROPHYSIOLOGY ANALYSIS TOOLKIT

Around 45 contributors from 13 institutions!
https://elephant.readthedocs.io/en/latest/index.html
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