

Spatio-temporal patterns in R2G data

Alessandra Stella

Introduction

Analysis of higher-order structures in parallel spike trains from experimental recordings of monkeys involved in behavioral tasks

Cell assembly hypothesis and temporal coding.

Bouss, Statistical Evaluation of methods for pattern detection. Master thesis, 2020

High-order correlation structures in spiking data. Quaglio, Rostami, Torre, Grün 2018

SPADE method for the detection of spatio-temporal spike patterns

- SPADE detects Spatio-temporal Spike
 Patterns in massively parallel spike trains.
 (Quaglio et al. 2017)
- Combines
 - an optimized pattern mining algorithm

together with

• **robust statistical testing** (surrogate generation)

STP detection on parallel spike trains. Adapted from Stella et al. 2019

SPADE method for the detection of spatio-temporal spike patterns

- SPADE detects Spatio-temporal Spike
 Patterns in massively parallel spike trains.
 (Quaglio et al. 2017)
- Combines
 - an optimized pattern mining algorithm

together with

• **robust statistical testing** (surrogate generation)

Structure of the SPADE method. Adapted from Stella et al. 2021

The reach-to-grasp experiment

- Instructed delay reaching and grasping experiment
- One 10x10 Utah electrode array is inserted in pre-/motor cortex of two macaque monkeys
- Two grip types, two force types
- Simultaneous recordings from ~100 neurons
- References: Riehle et al. 2013, Brochier et al. 2018

Figures adapted from Brochier et al. 2018.

Analysis on the R2G data with SPADE

i.e. application of SPADE to the R2G data (20 sessions)

Scientific questions:

- Are there patterns in electrophysiological data?
- Relationship of patterns to behavior
- Relationship of patterns to spatial arrangement of the array
- Which neurons participate prevalently in patterns?
- Are patterns different in structure across behavioral contexts?
- What is different in the results from Torre et al. 2016 (only synchronous patterns)?

Nikos	Lilou
i140613-001-04	1101006-002-03
i140616-001-04	l101007-001-02
i140617-001-05	1101013-001-02
i140627-001-05	1101015-001-04
i140701-001-05	1101108-001-03
i140702-001-09	1101110-003-04
i140703-001-05	l101111-002-04
i140704-001-04	1101126-002-02
i140718-001-03	l101210-001-02
i140725-001-06	l110209-001-06

Analysis on the R2G data with SPADE

i.e. application of SPADE to the R2G data (20 sessions)

Scientific questions:

- Are there patterns in electrophysiological data?
- Relationship of patterns to behavior
- Relationship of patterns to spatial arrangement of the array
- Which neurons participate prevalently in patterns?
- Are patterns different in structure across behavioral contexts?
- What is different in the results from Torre et al. 2016 (only synchronous patterns)?

Bin size	5 ms
Max pattern duration	60 ms
Dither	25 ms
N surrogates	5000
Surrogate method	trial shifting
Alpha level	0.05
Correction	FDR
Psr parameter	[2,2,2]
Firing rate threshold	70Hz
Spread synchrofacts	1
Min SNR	2.5

Analysis on the R2G data with SPADE

Pattern statistics for both monkeys across sessions.

- A. Pattern counts across behavioral epochs:
 - → ~60 patterns per monkey
 - → patterns occur in all phases of behavior and all trial types
- B. Pattern size:
 - \rightarrow 2-5 neurons per pattern
- C. Pattern lags:
 - → max temporal duration = 60ms
- D. Number of pattern repetitions:
 - → min: 10 to max. 250 occurrences, depending on size

Spatio-temporal patterns may share individual spikes

Spatio-temporal patterns have precise timing

Pattern specificity to behavior

- Shown: neurons involved in patterns. Video shows single trials in succession
- Patterns are strictly specific to the specific condition
- Different neuronal compositions and different lags
- → STPs are specific to behavior

Spatial distribution of patterns on the array

Spatial distribution of patterns on the array

Pattern specificity to behavior

$$S_i = \frac{|P_i \setminus (\cup_{j \neq i} P_j)|}{|P_i|}.$$

Specificity of patterns for different behaviors.

The specificity index takes values in the range [0, 1]: it is equal to 1 whenever all patterns detected in a certain instance are not present in any other instance of the same context, and it is 0 whenever all patterns of all instances completely overlap.

Clustering of neurons in patterns

Conclusions

- We hypothesize that assembly activity is expressed by the occurrence of precise spatio-temporal patterns of spikes emitted by neurons that presumably are members of an assembly
- We developed a method, called SPADE, detecting significant spatio temporal patterns in massively parallel spike trains
- We **analyzed N=20 experimental sessions** with SPADE consisting of about 100 parallel spike trains recorded by a 10x10-electrode Utah array in the pre-/motor cortex of two macaque monkeys performing a reach-to-grasp task
- Our results show that **spatio temporal patterns occur in all phases of the behavior**
- Patterns are specific to a behavioral condition, suggesting that **different assemblies are activated for each** specific behavioral context

