000907692 001__ 907692
000907692 005__ 20240610121112.0
000907692 0247_ $$2doi$$a10.1140/epjc/s10052-022-10247-7
000907692 0247_ $$2ISSN$$a1434-6044
000907692 0247_ $$2ISSN$$a1434-6052
000907692 0247_ $$2Handle$$a2128/31228
000907692 0247_ $$2pmid$$a35578684
000907692 0247_ $$2WOS$$aWOS:000794907700004
000907692 037__ $$aFZJ-2022-02163
000907692 082__ $$a530
000907692 1001_ $$0P:(DE-HGF)0$$aHolz, Simon$$b0$$eCorresponding author
000907692 245__ $$aA dispersive analysis of ${\eta '\rightarrow \pi ^+\pi ^-\gamma }$ and ${\eta '\rightarrow \ell ^+\ell ^-\gamma }$
000907692 260__ $$aHeidelberg$$bSpringer$$c2022
000907692 3367_ $$2DRIVER$$aarticle
000907692 3367_ $$2DataCite$$aOutput Types/Journal article
000907692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653912813_2888
000907692 3367_ $$2BibTeX$$aARTICLE
000907692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907692 3367_ $$00$$2EndNote$$aJournal Article
000907692 520__ $$aWe present a dispersive representation of the η′ transition form factor that allows one to account, in a consistent way, for the effects of ρ–ω mixing in both the isoscalar and the isovector contributions. Using this formalism, we analyze recent data on η′→π+π−γ to constrain the isovector part of the form factor, individually and in combination with data for the pion vector form factor, which suggests a tension in the ρ–ω mixing parameter. As a first application, we use our results, in combination with the most recent input for the isoscalar part of the form factor, to predict the corresponding spectrum of η′→ℓ+ℓ−γ, in particular we find the slope parameter bη′=1.455(24)GeV−2. With forthcoming data on the latter process, our results establish the necessary framework to improve the evaluation of the η′-pole contribution to the anomalous magnetic moment of the muon using experimental input from both η′ decay channels.
000907692 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907692 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000907692 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907692 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b1
000907692 7001_ $$00000-0003-1113-9377$$aHoferichter, Martin$$b2
000907692 7001_ $$00000-0002-1541-6581$$aKubis, Bastian$$b3
000907692 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-022-10247-7$$gVol. 82, no. 5, p. 434$$n5$$p434$$tThe European physical journal / C$$v82$$x1434-6044$$y2022
000907692 8564_ $$uhttps://juser.fz-juelich.de/record/907692/files/Holz2022_Article_ADispersiveAnalysisOfVarvecEta.pdf$$yOpenAccess
000907692 909CO $$ooai:juser.fz-juelich.de:907692$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b1$$kFZJ
000907692 9101_ $$0I:(DE-HGF)0$$60000-0003-1113-9377$$aExternal Institute$$b2$$kExtern
000907692 9101_ $$0I:(DE-HGF)0$$60000-0002-1541-6581$$aExternal Institute$$b3$$kExtern
000907692 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907692 9141_ $$y2022
000907692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907692 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907692 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000907692 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000907692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-09-24T10:41:08Z
000907692 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-09-24T10:41:08Z
000907692 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2018-09-24T10:41:08Z
000907692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2021$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000907692 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000907692 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000907692 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000907692 9801_ $$aFullTexts
000907692 980__ $$ajournal
000907692 980__ $$aVDB
000907692 980__ $$aUNRESTRICTED
000907692 980__ $$aI:(DE-Juel1)IAS-4-20090406
000907692 980__ $$aI:(DE-Juel1)IKP-3-20111104
000907692 981__ $$aI:(DE-Juel1)IAS-4-20090406