000907696 001__ 907696
000907696 005__ 20230227201804.0
000907696 0247_ $$2doi$$a10.1029/2021GL096781
000907696 0247_ $$2ISSN$$a0094-8276
000907696 0247_ $$2ISSN$$a1944-8007
000907696 0247_ $$2Handle$$a2128/31186
000907696 0247_ $$2altmetric$$aaltmetric:127721062
000907696 0247_ $$2WOS$$aWOS:000798222900001
000907696 037__ $$aFZJ-2022-02165
000907696 082__ $$a550
000907696 1001_ $$0P:(DE-Juel1)172902$$aFurusho-Percot, C.$$b0$$eCorresponding author
000907696 245__ $$aGroundwater Model Impacts Multiannual Simulations of Heat Waves
000907696 260__ $$aHoboken, NJ$$bWiley$$c2022
000907696 3367_ $$2DRIVER$$aarticle
000907696 3367_ $$2DataCite$$aOutput Types/Journal article
000907696 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652764817_2114
000907696 3367_ $$2BibTeX$$aARTICLE
000907696 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907696 3367_ $$00$$2EndNote$$aJournal Article
000907696 520__ $$aClimate change increases the frequency and intensity of heat waves, bringing along multiple adverse impacts on ecosystems, human health, societies, and the economy. Groundwater influences the near surface air temperature evolution through land–atmosphere interactions. Using simplified and shallow groundwater representations, reproducing heat waves in a regional climate model (RCM) is challenging. Currently, RCMs applied over Europe exhibit a warm bias. This study analyzes heat waves over a 13-year evaluation period, comparing the terrestrial systems modeling platform (TSMP) with an explicit groundwater representation to a EURO-CORDEX RCM ensemble, the ERA5 reanalysis, and observations. The TSMP multiannual heat wave statistics are consistent with observations and reanalysis data. We attribute the lower absolute deviations of heat wave metrics simulated by TSMP to the improved hydrology including 3D groundwater flow. The findings emphasize the importance of hydrological process representation in RCMs.
000907696 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000907696 536__ $$0G:(DE-Juel1)jibg35_20190501$$aESM Advanced Earth System Modelling Capacity (jibg35_20190501)$$cjibg35_20190501$$fESM Advanced Earth System Modelling Capacity$$x1
000907696 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907696 7001_ $$0P:(DE-Juel1)156253$$aGoergen, K.$$b1
000907696 7001_ $$0P:(DE-Juel1)178689$$aHartick, C.$$b2
000907696 7001_ $$0P:(DE-Juel1)165935$$aPoshyvailo-Strube, L.$$b3
000907696 7001_ $$0P:(DE-Juel1)151405$$aKollet, S.$$b4
000907696 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2021GL096781$$gVol. 49, no. 10$$n10$$pe2021GL096781$$tGeophysical research letters$$v49$$x0094-8276$$y2022
000907696 8564_ $$uhttps://juser.fz-juelich.de/record/907696/files/Geophysical%20Research%20Letters%20-%202022%20-%20Furusho%25E2%2580%2590Percot%20-%20Groundwater%20Model%20Impacts%20Multiannual%20Simulations%20of%20Heat%20Waves.pdf$$yOpenAccess
000907696 8767_ $$d2022-02-28$$eHybrid-OA$$jDEAL
000907696 909CO $$ooai:juser.fz-juelich.de:907696$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000907696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172902$$aForschungszentrum Jülich$$b0$$kFZJ
000907696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich$$b1$$kFZJ
000907696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178689$$aForschungszentrum Jülich$$b2$$kFZJ
000907696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165935$$aForschungszentrum Jülich$$b3$$kFZJ
000907696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b4$$kFZJ
000907696 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000907696 9141_ $$y2022
000907696 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907696 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907696 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000907696 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907696 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907696 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000907696 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000907696 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907696 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907696 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907696 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000907696 920__ $$lyes
000907696 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000907696 9801_ $$aFullTexts
000907696 980__ $$ajournal
000907696 980__ $$aVDB
000907696 980__ $$aUNRESTRICTED
000907696 980__ $$aI:(DE-Juel1)IBG-3-20101118
000907696 980__ $$aAPC