001     907696
005     20230227201804.0
024 7 _ |a 10.1029/2021GL096781
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a 2128/31186
|2 Handle
024 7 _ |a altmetric:127721062
|2 altmetric
024 7 _ |a WOS:000798222900001
|2 WOS
037 _ _ |a FZJ-2022-02165
082 _ _ |a 550
100 1 _ |a Furusho-Percot, C.
|0 P:(DE-Juel1)172902
|b 0
|e Corresponding author
245 _ _ |a Groundwater Model Impacts Multiannual Simulations of Heat Waves
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652764817_2114
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Climate change increases the frequency and intensity of heat waves, bringing along multiple adverse impacts on ecosystems, human health, societies, and the economy. Groundwater influences the near surface air temperature evolution through land–atmosphere interactions. Using simplified and shallow groundwater representations, reproducing heat waves in a regional climate model (RCM) is challenging. Currently, RCMs applied over Europe exhibit a warm bias. This study analyzes heat waves over a 13-year evaluation period, comparing the terrestrial systems modeling platform (TSMP) with an explicit groundwater representation to a EURO-CORDEX RCM ensemble, the ERA5 reanalysis, and observations. The TSMP multiannual heat wave statistics are consistent with observations and reanalysis data. We attribute the lower absolute deviations of heat wave metrics simulated by TSMP to the improved hydrology including 3D groundwater flow. The findings emphasize the importance of hydrological process representation in RCMs.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a ESM Advanced Earth System Modelling Capacity (jibg35_20190501)
|0 G:(DE-Juel1)jibg35_20190501
|c jibg35_20190501
|f ESM Advanced Earth System Modelling Capacity
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Goergen, K.
|0 P:(DE-Juel1)156253
|b 1
700 1 _ |a Hartick, C.
|0 P:(DE-Juel1)178689
|b 2
700 1 _ |a Poshyvailo-Strube, L.
|0 P:(DE-Juel1)165935
|b 3
700 1 _ |a Kollet, S.
|0 P:(DE-Juel1)151405
|b 4
773 _ _ |a 10.1029/2021GL096781
|g Vol. 49, no. 10
|0 PERI:(DE-600)2021599-X
|n 10
|p e2021GL096781
|t Geophysical research letters
|v 49
|y 2022
|x 0094-8276
856 4 _ |u https://juser.fz-juelich.de/record/907696/files/Geophysical%20Research%20Letters%20-%202022%20-%20Furusho%25E2%2580%2590Percot%20-%20Groundwater%20Model%20Impacts%20Multiannual%20Simulations%20of%20Heat%20Waves.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907696
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178689
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21