000907707 001__ 907707
000907707 005__ 20230123110619.0
000907707 0247_ $$2doi$$a10.1016/j.apcatb.2022.121451
000907707 0247_ $$2ISSN$$a0926-3373
000907707 0247_ $$2ISSN$$a1873-3883
000907707 0247_ $$2Handle$$a2128/31174
000907707 0247_ $$2altmetric$$aaltmetric:127895365
000907707 037__ $$aFZJ-2022-02170
000907707 041__ $$aEnglish
000907707 082__ $$a540
000907707 1001_ $$0P:(DE-HGF)0$$aLiang, Zhifu$$b0
000907707 245__ $$aMolecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol
000907707 260__ $$aAmsterdam$$bElsevier$$c2022
000907707 3367_ $$2DRIVER$$aarticle
000907707 3367_ $$2DataCite$$aOutput Types/Journal article
000907707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652686069_21300
000907707 3367_ $$2BibTeX$$aARTICLE
000907707 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907707 3367_ $$00$$2EndNote$$aJournal Article
000907707 520__ $$aThe electrochemical reduction of CO2 to methanol is a potentially cost-effective strategy to reduce the concentration of this greenhouse gas while at the same time producing a value-added chemical. Herein, we detail a highly efficient 2D nickel organic framework containing a large density of highly dispersed salophen NiN2O2 active sites toward electrochemical CO2RR to methanol. By tuning the ligand environment of the salophen NiN2O2, the electrocatalytic activity of the material toward CO2 reduction can be significantly improved. We prove that by introducing a carbonyl group at the ligand environment of the Ni active sites, the electrochemical CO2 reduction activity is highly promoted and its product selectivity reaches a Faradaic efficiency of 27% toward the production of methanol at − 0.9 V vs RHE. The salophen-based π-d conjugated metal-organic framework presented here thus provides the best performance toward CO2 reduction to methanol among the previously developed nickel-based electrocatalysts.
000907707 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907707 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000907707 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907707 7001_ $$0P:(DE-HGF)0$$aWang, Jianghao$$b1$$eCorresponding author
000907707 7001_ $$0P:(DE-Juel1)179016$$aTang, Pengyi$$b2
000907707 7001_ $$0P:(DE-HGF)0$$aTang, Weiqiang$$b3
000907707 7001_ $$0P:(DE-HGF)0$$aLiu, Lijia$$b4
000907707 7001_ $$0P:(DE-HGF)0$$aShakouri, Mohsen$$b5
000907707 7001_ $$0P:(DE-Juel1)186739$$aWang, Xiang$$b6
000907707 7001_ $$0P:(DE-HGF)0$$aLlorca, Jordi$$b7
000907707 7001_ $$0P:(DE-HGF)0$$aZhao, Shuangliang$$b8
000907707 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b9$$ufzj
000907707 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b10$$ufzj
000907707 7001_ $$0P:(DE-HGF)0$$aCabot, Andreu$$b11
000907707 7001_ $$0P:(DE-Juel1)168420$$aWu, Hao Bin$$b12$$eCorresponding author
000907707 7001_ $$0P:(DE-HGF)0$$aArbiol, Jordi$$b13$$eCorresponding author
000907707 773__ $$0PERI:(DE-600)2017331-3$$a10.1016/j.apcatb.2022.121451$$gVol. 314, p. 121451 -$$p121451 -$$tApplied catalysis / B$$v314$$x0926-3373$$y2022
000907707 8564_ $$uhttps://juser.fz-juelich.de/record/907707/files/1-s2.0-S0926337322003927-main.pdf$$yOpenAccess
000907707 8564_ $$uhttps://juser.fz-juelich.de/record/907707/files/Molecular%20Engineering%20to%20Introduce%20Carbonyl%20Between%20Nickel%202022.pdf$$yOpenAccess
000907707 909CO $$ooai:juser.fz-juelich.de:907707$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000907707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b9$$kFZJ
000907707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000907707 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907707 9141_ $$y2022
000907707 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907707 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000907707 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907707 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL CATAL B-ENVIRON : 2021$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000907707 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bAPPL CATAL B-ENVIRON : 2021$$d2022-11-09
000907707 920__ $$lyes
000907707 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907707 980__ $$ajournal
000907707 980__ $$aVDB
000907707 980__ $$aUNRESTRICTED
000907707 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907707 9801_ $$aFullTexts