001     907707
005     20230123110619.0
024 7 _ |a 10.1016/j.apcatb.2022.121451
|2 doi
024 7 _ |a 0926-3373
|2 ISSN
024 7 _ |a 1873-3883
|2 ISSN
024 7 _ |a 2128/31174
|2 Handle
024 7 _ |a altmetric:127895365
|2 altmetric
037 _ _ |a FZJ-2022-02170
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Liang, Zhifu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652686069_21300
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The electrochemical reduction of CO2 to methanol is a potentially cost-effective strategy to reduce the concentration of this greenhouse gas while at the same time producing a value-added chemical. Herein, we detail a highly efficient 2D nickel organic framework containing a large density of highly dispersed salophen NiN2O2 active sites toward electrochemical CO2RR to methanol. By tuning the ligand environment of the salophen NiN2O2, the electrocatalytic activity of the material toward CO2 reduction can be significantly improved. We prove that by introducing a carbonyl group at the ligand environment of the Ni active sites, the electrochemical CO2 reduction activity is highly promoted and its product selectivity reaches a Faradaic efficiency of 27% toward the production of methanol at − 0.9 V vs RHE. The salophen-based π-d conjugated metal-organic framework presented here thus provides the best performance toward CO2 reduction to methanol among the previously developed nickel-based electrocatalysts.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Jianghao
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Tang, Pengyi
|0 P:(DE-Juel1)179016
|b 2
700 1 _ |a Tang, Weiqiang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Lijia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shakouri, Mohsen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Xiang
|0 P:(DE-Juel1)186739
|b 6
700 1 _ |a Llorca, Jordi
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhao, Shuangliang
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 9
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 10
|u fzj
700 1 _ |a Cabot, Andreu
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wu, Hao Bin
|0 P:(DE-Juel1)168420
|b 12
|e Corresponding author
700 1 _ |a Arbiol, Jordi
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1016/j.apcatb.2022.121451
|g Vol. 314, p. 121451 -
|0 PERI:(DE-600)2017331-3
|p 121451 -
|t Applied catalysis / B
|v 314
|y 2022
|x 0926-3373
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907707/files/1-s2.0-S0926337322003927-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907707/files/Molecular%20Engineering%20to%20Introduce%20Carbonyl%20Between%20Nickel%202022.pdf
909 C O |o oai:juser.fz-juelich.de:907707
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL CATAL B-ENVIRON : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b APPL CATAL B-ENVIRON : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21