000907708 001__ 907708
000907708 005__ 20230123110620.0
000907708 0247_ $$2doi$$a10.1002/adfm.202200529
000907708 0247_ $$2ISSN$$a1057-9257
000907708 0247_ $$2ISSN$$a1099-0712
000907708 0247_ $$2ISSN$$a1616-301X
000907708 0247_ $$2ISSN$$a1616-3028
000907708 0247_ $$2Handle$$a2128/31403
000907708 0247_ $$2altmetric$$aaltmetric:125289438
000907708 0247_ $$2WOS$$aWOS:000772014800001
000907708 037__ $$aFZJ-2022-02171
000907708 041__ $$aEnglish
000907708 082__ $$a530
000907708 1001_ $$0P:(DE-HGF)0$$aLi, Mengyao$$b0
000907708 245__ $$aEnhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine‐Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries
000907708 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907708 3367_ $$2DRIVER$$aarticle
000907708 3367_ $$2DataCite$$aOutput Types/Journal article
000907708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656505658_17030
000907708 3367_ $$2BibTeX$$aARTICLE
000907708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907708 3367_ $$00$$2EndNote$$aJournal Article
000907708 520__ $$aThe shuttling behavior and sluggish conversion kinetics of intermediate lithium polysulfides (LiPS) represent the main obstacles to the practical application of lithium–sulfur batteries (LSBs). Herein, an innovative sulfur host is proposed, based on an iodine-doped bismuth selenide (I-Bi2Se3), able to solve these limitations by immobilizing the LiPS and catalytically activating the redox conversion at the cathode. The synthesis of I-Bi2Se3 nanosheets is detailed here and their morphology, crystal structure, and composition are thoroughly. Density-functional theory and experimental tools are used to demonstrate that I-Bi2Se3 nanosheets are characterized by a proper composition and micro- and nano-structure to facilitate Li+ diffusion and fast electron transportation, and to provide numerous surface sites with strong LiPS adsorbability and extraordinary catalytic activity. Overall, I-Bi2Se3/S electrodes exhibit outstanding initial capacities up to 1500 mAh g−1 at 0.1 C and cycling stability over 1000 cycles, with an average capacity decay rate of only 0.012% per cycle at 1 C. Besides, at a sulfur loading of 5.2 mg cm−2, a high areal capacity of 5.70 mAh cm−2 at 0.1 C is obtained with an electrolyte/sulfur ratio of 12 µL mg−1. This work demonstrated that doping is an effective way to optimize the metal selenide catalysts in LSBs.
000907708 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907708 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000907708 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907708 7001_ $$00000-0002-3842-8286$$aYang, Dawei$$b1$$eCorresponding author
000907708 7001_ $$0P:(DE-HGF)0$$aBiendicho, Jordi Jacas$$b2
000907708 7001_ $$0P:(DE-Juel1)185035$$aHan, Xu$$b3
000907708 7001_ $$0P:(DE-HGF)0$$aZhang, Chaoqi$$b4
000907708 7001_ $$0P:(DE-Juel1)178047$$aLiu, Kun$$b5$$ufzj
000907708 7001_ $$0P:(DE-HGF)0$$aDiao, Jiefeng$$b6
000907708 7001_ $$0P:(DE-HGF)0$$aLi, Junshan$$b7
000907708 7001_ $$0P:(DE-Juel1)187546$$aWang, Jing$$b8$$ufzj
000907708 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b9$$ufzj
000907708 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b10$$ufzj
000907708 7001_ $$0P:(DE-HGF)0$$aWang, Jiaao$$b11$$eCorresponding author
000907708 7001_ $$0P:(DE-HGF)0$$aHenkelman, Graeme$$b12
000907708 7001_ $$0P:(DE-HGF)0$$aMorante, Joan Ramon$$b13
000907708 7001_ $$0P:(DE-HGF)0$$aArbiol, Jordi$$b14
000907708 7001_ $$0P:(DE-HGF)0$$aChou, Shu-Lei$$b15$$eCorresponding author
000907708 7001_ $$00000-0002-7533-3251$$aCabot, Andreu$$b16$$eCorresponding author
000907708 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202200529$$gp. 2200529 -$$n26$$p2200529 -$$tAdvanced functional materials$$v32$$x1057-9257$$y2022
000907708 8564_ $$uhttps://juser.fz-juelich.de/record/907708/files/Adv%20Funct%20Materials%20-%202022%20-%20Li%20-%20Enhanced%20Polysulfide%20Conversion%20with%20Highly%20Conductive%20and%20Electrocatalytic%20Iodine%E2%80%90Doped.pdf
000907708 8564_ $$uhttps://juser.fz-juelich.de/record/907708/files/Enhanced%20polysulfide.pdf$$yPublished on 2022-03-23. Available in OpenAccess from 2023-03-23.
000907708 909CO $$ooai:juser.fz-juelich.de:907708$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000907708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178047$$aForschungszentrum Jülich$$b5$$kFZJ
000907708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187546$$aForschungszentrum Jülich$$b8$$kFZJ
000907708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b9$$kFZJ
000907708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b10$$kFZJ
000907708 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907708 9141_ $$y2022
000907708 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000907708 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000907708 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000907708 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000907708 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000907708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2021$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000907708 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2021$$d2022-11-15
000907708 920__ $$lyes
000907708 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907708 980__ $$ajournal
000907708 980__ $$aVDB
000907708 980__ $$aUNRESTRICTED
000907708 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907708 9801_ $$aFullTexts