Hauptseite > Publikationsdatenbank > Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine‐Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries > print |
001 | 907708 | ||
005 | 20230123110620.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202200529 |2 doi |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 2128/31403 |2 Handle |
024 | 7 | _ | |a altmetric:125289438 |2 altmetric |
024 | 7 | _ | |a WOS:000772014800001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02171 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Li, Mengyao |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine‐Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1656505658_17030 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The shuttling behavior and sluggish conversion kinetics of intermediate lithium polysulfides (LiPS) represent the main obstacles to the practical application of lithium–sulfur batteries (LSBs). Herein, an innovative sulfur host is proposed, based on an iodine-doped bismuth selenide (I-Bi2Se3), able to solve these limitations by immobilizing the LiPS and catalytically activating the redox conversion at the cathode. The synthesis of I-Bi2Se3 nanosheets is detailed here and their morphology, crystal structure, and composition are thoroughly. Density-functional theory and experimental tools are used to demonstrate that I-Bi2Se3 nanosheets are characterized by a proper composition and micro- and nano-structure to facilitate Li+ diffusion and fast electron transportation, and to provide numerous surface sites with strong LiPS adsorbability and extraordinary catalytic activity. Overall, I-Bi2Se3/S electrodes exhibit outstanding initial capacities up to 1500 mAh g−1 at 0.1 C and cycling stability over 1000 cycles, with an average capacity decay rate of only 0.012% per cycle at 1 C. Besides, at a sulfur loading of 5.2 mg cm−2, a high areal capacity of 5.70 mAh cm−2 at 0.1 C is obtained with an electrolyte/sulfur ratio of 12 µL mg−1. This work demonstrated that doping is an effective way to optimize the metal selenide catalysts in LSBs. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Yang, Dawei |0 0000-0002-3842-8286 |b 1 |e Corresponding author |
700 | 1 | _ | |a Biendicho, Jordi Jacas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Han, Xu |0 P:(DE-Juel1)185035 |b 3 |
700 | 1 | _ | |a Zhang, Chaoqi |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Liu, Kun |0 P:(DE-Juel1)178047 |b 5 |u fzj |
700 | 1 | _ | |a Diao, Jiefeng |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Li, Junshan |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wang, Jing |0 P:(DE-Juel1)187546 |b 8 |u fzj |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 9 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 10 |u fzj |
700 | 1 | _ | |a Wang, Jiaao |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
700 | 1 | _ | |a Henkelman, Graeme |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Morante, Joan Ramon |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Arbiol, Jordi |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Chou, Shu-Lei |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
700 | 1 | _ | |a Cabot, Andreu |0 0000-0002-7533-3251 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1002/adfm.202200529 |g p. 2200529 - |0 PERI:(DE-600)2039420-2 |n 26 |p 2200529 - |t Advanced functional materials |v 32 |y 2022 |x 1057-9257 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907708/files/Adv%20Funct%20Materials%20-%202022%20-%20Li%20-%20Enhanced%20Polysulfide%20Conversion%20with%20Highly%20Conductive%20and%20Electrocatalytic%20Iodine%E2%80%90Doped.pdf |
856 | 4 | _ | |y Published on 2022-03-23. Available in OpenAccess from 2023-03-23. |u https://juser.fz-juelich.de/record/907708/files/Enhanced%20polysulfide.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:907708 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178047 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)187546 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-01-28 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2021 |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-15 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-15 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2021 |d 2022-11-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|