001     907708
005     20230123110620.0
024 7 _ |a 10.1002/adfm.202200529
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/31403
|2 Handle
024 7 _ |a altmetric:125289438
|2 altmetric
024 7 _ |a WOS:000772014800001
|2 WOS
037 _ _ |a FZJ-2022-02171
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Li, Mengyao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine‐Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1656505658_17030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The shuttling behavior and sluggish conversion kinetics of intermediate lithium polysulfides (LiPS) represent the main obstacles to the practical application of lithium–sulfur batteries (LSBs). Herein, an innovative sulfur host is proposed, based on an iodine-doped bismuth selenide (I-Bi2Se3), able to solve these limitations by immobilizing the LiPS and catalytically activating the redox conversion at the cathode. The synthesis of I-Bi2Se3 nanosheets is detailed here and their morphology, crystal structure, and composition are thoroughly. Density-functional theory and experimental tools are used to demonstrate that I-Bi2Se3 nanosheets are characterized by a proper composition and micro- and nano-structure to facilitate Li+ diffusion and fast electron transportation, and to provide numerous surface sites with strong LiPS adsorbability and extraordinary catalytic activity. Overall, I-Bi2Se3/S electrodes exhibit outstanding initial capacities up to 1500 mAh g−1 at 0.1 C and cycling stability over 1000 cycles, with an average capacity decay rate of only 0.012% per cycle at 1 C. Besides, at a sulfur loading of 5.2 mg cm−2, a high areal capacity of 5.70 mAh cm−2 at 0.1 C is obtained with an electrolyte/sulfur ratio of 12 µL mg−1. This work demonstrated that doping is an effective way to optimize the metal selenide catalysts in LSBs.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yang, Dawei
|0 0000-0002-3842-8286
|b 1
|e Corresponding author
700 1 _ |a Biendicho, Jordi Jacas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Han, Xu
|0 P:(DE-Juel1)185035
|b 3
700 1 _ |a Zhang, Chaoqi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Kun
|0 P:(DE-Juel1)178047
|b 5
|u fzj
700 1 _ |a Diao, Jiefeng
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Junshan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wang, Jing
|0 P:(DE-Juel1)187546
|b 8
|u fzj
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 9
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 10
|u fzj
700 1 _ |a Wang, Jiaao
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Henkelman, Graeme
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Morante, Joan Ramon
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Arbiol, Jordi
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Chou, Shu-Lei
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
700 1 _ |a Cabot, Andreu
|0 0000-0002-7533-3251
|b 16
|e Corresponding author
773 _ _ |a 10.1002/adfm.202200529
|g p. 2200529 -
|0 PERI:(DE-600)2039420-2
|n 26
|p 2200529 -
|t Advanced functional materials
|v 32
|y 2022
|x 1057-9257
856 4 _ |u https://juser.fz-juelich.de/record/907708/files/Adv%20Funct%20Materials%20-%202022%20-%20Li%20-%20Enhanced%20Polysulfide%20Conversion%20with%20Highly%20Conductive%20and%20Electrocatalytic%20Iodine%E2%80%90Doped.pdf
856 4 _ |y Published on 2022-03-23. Available in OpenAccess from 2023-03-23.
|u https://juser.fz-juelich.de/record/907708/files/Enhanced%20polysulfide.pdf
909 C O |o oai:juser.fz-juelich.de:907708
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)187546
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-15
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2021
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21